Geometry I

Author: Marcel Berger
Publisher: Springer Science & Business Media
ISBN: 9783540116585
Format: PDF, ePub, Mobi
Download Now
The first part of a two-volume text providing a readable and lively presentation of large parts of geometry in the classical sense, this book appeals systematically to the reader's intuition and vision, and illustrates the mathematical text with many figures.

Geometry

Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 9783540966548
Format: PDF
Download Now

Geometry Topology and Physics Second Edition

Author: Mikio Nakahara
Publisher: CRC Press
ISBN: 9780750306065
Format: PDF, Mobi
Download Now
Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.

Geometry

Author: David A. Brannan
Publisher: Cambridge University Press
ISBN: 9780521597876
Format: PDF, ePub, Docs
Download Now
Textbook for undergraduate courses on geometry or for self study that reveals the intricacies of geometry.

Geometry Grades 7 10

Author: Sara Freeman
Publisher: Lorenz Educational Press
ISBN: 0787705942
Format: PDF, ePub, Mobi
Download Now
This easy-to-use workbook is chock full of stimulating activities that will jumpstart your students' interest in geometry while providing practice with the major geometry concepts. A variety of puzzles, mazes, games, and self-check formats will challenge students to think creatively as they sharpen their geometry skills. Each page begins with a clear explanation of the featured geometry topic, providing extra review and reinforcement. A special assessment section is included at the end of the book to help students prepare for standardized tests. 48 pages

Analytical Geometry

Author: Izu Vaisman
Publisher: World Scientific
ISBN: 9789810231583
Format: PDF
Download Now
This volume discusses the classical subjects of Euclidean, affine and projective geometry in two and three dimensions, including the classification of conics and quadrics, and geometric transformations. These subjects are important both for the mathematical grounding of the student and for applications to various other subjects. They may be studied in the first year or as a second course in geometry.The material is presented in a geometric way, and it aims to develop the geometric intuition and thinking of the student, as well as his ability to understand and give mathematical proofs. Linear algebra is not a prerequisite, and is kept to a bare minimum.The book includes a few methodological novelties, and a large number of exercises and problems with solutions. It also has an appendix about the use of the computer program MAPLEV in solving problems of analytical and projective geometry, with examples.