Graph Theory and Its Applications Second Edition

Author: Jonathan L. Gross
Publisher: CRC Press
ISBN: 158488505X
Format: PDF
Download Now
Already an international bestseller, with the release of this greatly enhanced second edition, Graph Theory and Its Applications is now an even better choice as a textbook for a variety of courses -- a textbook that will continue to serve your students as a reference for years to come. The superior explanations, broad coverage, and abundance of illustrations and exercises that positioned this as the premier graph theory text remain, but are now augmented by a broad range of improvements. Nearly 200 pages have been added for this edition, including nine new sections and hundreds of new exercises, mostly non-routine. What else is new? New chapters on measurement and analytic graph theory Supplementary exercises in each chapter - ideal for reinforcing, reviewing, and testing. Solutions and hints, often illustrated with figures, to selected exercises - nearly 50 pages worth Reorganization and extensive revisions in more than half of the existing chapters for smoother flow of the exposition Foreshadowing - the first three chapters now preview a number of concepts, mostly via the exercises, to pique the interest of reader Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.

Handbook of Graph Theory Second Edition

Author: Jonathan L. Gross
Publisher: CRC Press
ISBN: 1439880190
Format: PDF, Docs
Download Now
In the ten years since the publication of the best-selling first edition, more than 1,000 graph theory papers have been published each year. Reflecting these advances, Handbook of Graph Theory, Second Edition provides comprehensive coverage of the main topics in pure and applied graph theory. This second edition—over 400 pages longer than its predecessor—incorporates 14 new sections. Each chapter includes lists of essential definitions and facts, accompanied by examples, tables, remarks, and, in some cases, conjectures and open problems. A bibliography at the end of each chapter provides an extensive guide to the research literature and pointers to monographs. In addition, a glossary is included in each chapter as well as at the end of each section. This edition also contains notes regarding terminology and notation. With 34 new contributors, this handbook is the most comprehensive single-source guide to graph theory. It emphasizes quick accessibility to topics for non-experts and enables easy cross-referencing among chapters.

Handbook of Graph Theory Second Edition

Author: Jonathan L. Gross
Publisher: CRC Press
ISBN: 9781138199668
Format: PDF, ePub, Mobi
Download Now
"Over the past fty years, graph theory has been one of the most rapidly growing areas of mathematics. Since 1960, more than 10,000 di erent authors have published papers classi ed as graph theory by Math Reviews, and for the past decade, more than 1000 graph theory papers have been published each year. Not surprisingly, this Second Edition is about 450 pages longer than the First Edition, which appeared in 2004. This Handbook is intended to provide as comprehensive a view of graph theory as is feasible in a single volume. Many of our chapters survey areas that have large research communities, with hundreds of active mathematicians, and which could be developed into independent handbooks. The 89 contributors to this volume, 31 of whom are new to this edition, collectively represent perhaps as much as 90% or more of the main topics in pure and applied graph theory. Thirteen of the sections in the Second Edition cover newer topics that did not appear in the First Edition. Format In order to achieve this kind of comprehensiveness, we challenged our contributors to restrict their expository prose to a bare minimum, by adhering to the ready-reference style of the CRC Handbook series, which emphasizes quick accessibility for the non- expert. We thank the contributors for responding so well to this challenge. The 13 chapters of the Handbook are organized into 65 sections. Within each section, several major topics are presented. For each topic, there are lists of the essential de nitions and facts, accompanied by examples, tables, remarks, and in some cases, conjectures and open problems. Each section ends with a bibliography of references tied directly to that section. In many cases, these bibliographies are several pages long, providing extensive guides to the"--

Topological Graph Theory

Author: Jonathan L. Gross
Publisher: Courier Corporation
ISBN: 0486417417
Format: PDF, ePub, Mobi
Download Now
Iintroductory treatment emphasizes graph imbedding but also covers connections between topological graph theory and other areas of mathematics. Authors explore the role of voltage graphs in the derivation of genus formulas, explain the Ringel-Youngs theorem, and examine the genus of a group, including imbeddings of Cayley graphs. Many figures. 1987 edition.

Symmetry

Author: R. McWeeny
Publisher: Elsevier
ISBN: 1483226247
Format: PDF, Docs
Download Now
Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.

Combinatorics and Graph Theory

Author: John Harris
Publisher: Springer Science & Business Media
ISBN: 0387797114
Format: PDF, Kindle
Download Now
These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.

A Textbook of Graph Theory

Author: R. Balakrishnan
Publisher: Springer Science & Business Media
ISBN: 1461445280
Format: PDF, ePub
Download Now
In its second edition, expanded with new chapters on domination in graphs and on the spectral properties of graphs, this book offers a solid background in the basics of graph theory. Introduces such topics as Dirac's theorem on k-connected graphs and more.

How to Count

Author: R.B.J.T. Allenby
Publisher: CRC Press
ISBN: 1420082612
Format: PDF, ePub, Docs
Download Now
Emphasizes a Problem Solving Approach A first course in combinatorics Completely revised, How to Count: An Introduction to Combinatorics, Second Edition shows how to solve numerous classic and other interesting combinatorial problems. The authors take an easily accessible approach that introduces problems before leading into the theory involved. Although the authors present most of the topics through concrete problems, they also emphasize the importance of proofs in mathematics. New to the Second Edition This second edition incorporates 50 percent more material. It includes seven new chapters that cover occupancy problems, Stirling and Catalan numbers, graph theory, trees, Dirichlet’s pigeonhole principle, Ramsey theory, and rook polynomials. This edition also contains more than 450 exercises. Ideal for both classroom teaching and self-study, this text requires only a modest amount of mathematical background. In an engaging way, it covers many combinatorial tools, such as the inclusion-exclusion principle, generating functions, recurrence relations, and Pólya’s counting theorem.

Graphs Algorithms and Optimization

Author: William Kocay
Publisher: CRC Press
ISBN: 135198912X
Format: PDF, ePub, Docs
Download Now
Graph theory offers a rich source of problems and techniques for programming and data structure development, as well as for understanding computing theory, including NP-Completeness and polynomial reduction. A comprehensive text, Graphs, Algorithms, and Optimization features clear exposition on modern algorithmic graph theory presented in a rigorous yet approachable way. The book covers major areas of graph theory including discrete optimization and its connection to graph algorithms. The authors explore surface topology from an intuitive point of view and include detailed discussions on linear programming that emphasize graph theory problems useful in mathematics and computer science. Many algorithms are provided along with the data structure needed to program the algorithms efficiently. The book also provides coverage on algorithm complexity and efficiency, NP-completeness, linear optimization, and linear programming and its relationship to graph algorithms. Written in an accessible and informal style, this work covers nearly all areas of graph theory. Graphs, Algorithms, and Optimization provides a modern discussion of graph theory applicable to mathematics, computer science, and crossover applications.

A Java Library of Graph Algorithms and Optimization

Author: Hang T. Lau
Publisher: CRC Press
ISBN: 9781584887195
Format: PDF, ePub
Download Now
Because of its portability and platform-independence, Java is the ideal computer programming language to use when working on graph algorithms and other mathematical programming problems. Collecting some of the most popular graph algorithms and optimization procedures, A Java Library of Graph Algorithms and Optimization provides the source code for a library of Java programs that can be used to solve problems in graph theory and combinatorial optimization. Self-contained and largely independent, each topic starts with a problem description and an outline of the solution procedure, followed by its parameter list specification, source code, and a test example that illustrates the usage of the code. The book begins with a chapter on random graph generation that examines bipartite, regular, connected, Hamilton, and isomorphic graphs as well as spanning, labeled, and unlabeled rooted trees. It then discusses connectivity procedures, followed by a paths and cycles chapter that contains the Chinese postman and traveling salesman problems, Euler and Hamilton cycles, and shortest paths. The author proceeds to describe two test procedures involving planarity and graph isomorphism. Subsequent chapters deal with graph coloring, graph matching, network flow, and packing and covering, including the assignment, bottleneck assignment, quadratic assignment, multiple knapsack, set covering, and set partitioning problems. The final chapters explore linear, integer, and quadratic programming. The appendices provide references that offer further details of the algorithms and include the definitions of many graph theory terms used in the book.