## Groups Graphs and Trees

Author: John Meier
Publisher: Cambridge University Press
ISBN: 9780521719773
Format: PDF, Docs

This outstanding new book presents the modern, geometric approach to group theory, in an accessible and engaging approach to the subject. Topics include group actions, the construction of Cayley graphs, and connections to formal language theory and geometry. Theorems are balanced by specific examples such as Baumslag-Solitar groups, the Lamplighter group and Thompson's group. Only exposure to undergraduate-level abstract algebra is presumed, and from that base the core techniques and theorems are developed and recent research is explored. Exercises and figures throughout the text encourage the development of geometric intuition. Ideal for advanced undergraduates looking to deepen their understanding of groups, this book will also be of interest to graduate students and researchers as a gentle introduction to geometric group theory.

## Geometric Group Theory

Author: Clara Löh
Publisher: Springer
ISBN: 3319722549
Format: PDF, Docs

Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.

## Coarse Geometry and Randomness

Author: Itai Benjamini
Publisher: Springer
ISBN: 3319025767
Format: PDF

These lecture notes study the interplay between randomness and geometry of graphs. The first part of the notes reviews several basic geometric concepts, before moving on to examine the manifestation of the underlying geometry in the behavior of random processes, mostly percolation and random walk. The study of the geometry of infinite vertex transitive graphs, and of Cayley graphs in particular, is fairly well developed. One goal of these notes is to point to some random metric spaces modeled by graphs that turn out to be somewhat exotic, that is, they admit a combination of properties not encountered in the vertex transitive world. These include percolation clusters on vertex transitive graphs, critical clusters, local and scaling limits of graphs, long range percolation, CCCP graphs obtained by contracting percolation clusters on graphs, and stationary random graphs, including the uniform infinite planar triangulation (UIPT) and the stochastic hyperbolic planar quadrangulation (SHIQ).

## Office Hours with a Geometric Group Theorist

Author: Matt Clay
Publisher: Princeton University Press
ISBN: 1400885396
Format: PDF, ePub, Docs

Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincaré, Felix Klein, J.H.C. Whitehead, and Max Dehn. Office Hours with a Geometric Group Theorist brings together leading experts who provide one-on-one instruction on key topics in this exciting and relatively new field of mathematics. It's like having office hours with your most trusted math professors. An essential primer for undergraduates making the leap to graduate work, the book begins with free groups—actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cover several large-scale geometric invariants of groups, including quasi-isometry groups, Dehn functions, Gromov hyperbolicity, and asymptotic dimension. It also delves into important examples of groups, such as Coxeter groups, Thompson's groups, right-angled Artin groups, lamplighter groups, mapping class groups, and braid groups. The tone is conversational throughout, and the instruction is driven by examples. Accessible to students who have taken a first course in abstract algebra, Office Hours with a Geometric Group Theorist also features numerous exercises and in-depth projects designed to engage readers and provide jumping-off points for research projects.

## Metric Embeddings

Author: Mikhail I. Ostrovskii
Publisher: Walter de Gruyter
ISBN: 3110264013
Format: PDF, ePub

Embeddings of discrete metric spaces into Banach spaces recently became an important tool in computer science and topology. The book will help readers to enter and to work in this very rapidly developing area having many important connections with different parts of mathematics and computer science. The purpose of the book is to present some of the most important techniques and results, mostly on bilipschitz and coarse embeddings. The topics include embeddability of locally finite metric spaces into Banach spaces is finitely determined, constructions of embeddings, distortion in terms of Poincaré inequalities, constructions of families of expanders and of families of graphs with unbounded girth and lower bounds on average degrees, Banach spaces which do not admit coarse embeddings of expanders, structure of metric spaces which are not coarsely embeddable into a Hilbert space, applications of Markov chains to embeddability problem, metric characterizations of properties of Banach spaces, and Lipschitz free spaces.

## Introduction to Quantum Graphs

Author: Gregory Berkolaiko
Publisher: American Mathematical Soc.
ISBN: 0821892118
Format: PDF, ePub, Mobi

A ``quantum graph'' is a graph considered as a one-dimensional complex and equipped with a differential operator (``Hamiltonian''). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., ``meso-'' or ``nano-scale'') system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on quantum graphs has brought together tools and intuition coming from graph theory, combinatorics, mathematical physics, PDEs, and spectral theory. This book provides a comprehensive introduction to the topic, collecting the main notions and techniques. It also contains a survey of the current state of the quantum graph research and applications.

## Pascal Fermat und die Berechnung des Gl cks

Author: Keith J. Devlin
Publisher: C.H.Beck
ISBN: 9783406590993
Format: PDF, Mobi

Der Autor stellt die Entstehung der Wahrscheinlichkeitsrechnung und den damit verbundenen Wandel des menschlichen Alltagslebens dar.

## New Technical Books

Author: New York Public Library
Publisher:
ISBN:
Format: PDF, Kindle

## Notices of the American Mathematical Society

Author: American Mathematical Society
Publisher:
ISBN:
Format: PDF, Kindle

## Classical Topology and Combinatorial Group Theory

Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 9780387979700
Format: PDF, ePub

This introduction to topology stresses geometric aspects, focusing on historical background and visual interpretation of results. The 2nd edition offers 300 illustrations, numerous exercises, challenging open problems and a new chapter on unsolvable problems.