Handbook of Blind Source Separation

Author: Pierre Comon
Publisher: Academic Press
ISBN: 9780080884943
Format: PDF, Mobi
Download Now
Edited by the people who were forerunners in creating the field, together with contributions from 34 leading international experts, this handbook provides the definitive reference on Blind Source Separation, giving a broad and comprehensive description of all the core principles and methods, numerical algorithms and major applications in the fields of telecommunications, biomedical engineering and audio, acoustic and speech processing. Going beyond a machine learning perspective, the book reflects recent results in signal processing and numerical analysis, and includes topics such as optimization criteria, mathematical tools, the design of numerical algorithms, convolutive mixtures, and time frequency approaches. This Handbook is an ideal reference for university researchers, R&D engineers and graduates wishing to learn the core principles, methods, algorithms, and applications of Blind Source Separation. Covers the principles and major techniques and methods in one book Edited by the pioneers in the field with contributions from 34 of the world’s experts Describes the main existing numerical algorithms and gives practical advice on their design Covers the latest cutting edge topics: second order methods; algebraic identification of under-determined mixtures, time-frequency methods, Bayesian approaches, blind identification under non negativity approaches, semi-blind methods for communications Shows the applications of the methods to key application areas such as telecommunications, biomedical engineering, speech, acoustic, audio and music processing, while also giving a general method for developing applications

On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling

Author: Addisson Salazar
Publisher: Springer Science & Business Media
ISBN: 3642307523
Format: PDF, Docs
Download Now
A natural evolution of statistical signal processing, in connection with the progressive increase in computational power, has been exploiting higher-order information. Thus, high-order spectral analysis and nonlinear adaptive filtering have received the attention of many researchers. One of the most successful techniques for non-linear processing of data with complex non-Gaussian distributions is the independent component analysis mixture modelling (ICAMM). This thesis defines a novel formalism for pattern recognition and classification based on ICAMM, which unifies a certain number of pattern recognition tasks allowing generalization. The versatile and powerful framework developed in this work can deal with data obtained from quite different areas, such as image processing, impact-echo testing, cultural heritage, hypnograms analysis, web-mining and might therefore be employed to solve many different real-world problems.

Advances in Heuristic Signal Processing and Applications

Author: Amitava Chatterjee
Publisher: Springer Science & Business Media
ISBN: 3642378803
Format: PDF, ePub, Docs
Download Now
There have been significant developments in the design and application of algorithms for both one-dimensional signal processing and multidimensional signal processing, namely image and video processing, with the recent focus changing from a step-by-step procedure of designing the algorithm first and following up with in-depth analysis and performance improvement to instead applying heuristic-based methods to solve signal-processing problems. In this book the contributing authors demonstrate both general-purpose algorithms and those aimed at solving specialized application problems, with a special emphasis on heuristic iterative optimization methods employing modern evolutionary and swarm intelligence based techniques. The applications considered are in domains such as communications engineering, estimation and tracking, digital filter design, wireless sensor networks, bioelectric signal classification, image denoising, and image feature tracking. The book presents interesting, state-of-the-art methodologies for solving real-world problems and it is a suitable reference for researchers and engineers in the areas of heuristics and signal processing.

Independent Component Analysis and Signal Separation

Author: Tulay Adali
Publisher: Springer
ISBN: 3642005993
Format: PDF, Docs
Download Now
This book constitutes the refereed proceedings of the 8th International Conference on Independent Component Analysis and Signal Separation, ICA 2009, held in Paraty, Brazil, in March 2009. The 97 revised papers presented were carefully reviewed and selected from 137 submissions. The papers are organized in topical sections on theory, algorithms and architectures, biomedical applications, image processing, speech and audio processing, other applications, as well as a special session on evaluation.

Independent Component Analysis and Blind Signal Separation

Author: Justinian Rosca
Publisher: Springer
ISBN: 3540326316
Format: PDF, ePub
Download Now
This book constitutes the refereed proceedings of the 6th International Conference on Independent Component Analysis and Blind Source Separation, ICA 2006, held in Charleston, SC, USA, in March 2006. The 120 revised papers presented were carefully reviewed and selected from 183 submissions. The papers are organized in topical sections on algorithms and architectures, applications, medical applications, speech and signal processing, theory, and visual and sensory processing.

Geometrische Methoden in der Invariantentheorie

Author: Hanspeter Kraft
Publisher: Springer-Verlag
ISBN: 3663101436
Format: PDF, Mobi
Download Now
In dieser Einführung geht es vor allem um die geometrischen Aspekte der Invariantentheorie. Die hauptsächliche Motivation bildet das Studium von Klassifikations- und Normalformenproblemen, die auch historisch der Ausgangspunkt für invariantentheoretische Untersuchungen waren.

Matlab f r Dummies

Author: Jim Sizemore
Publisher: John Wiley & Sons
ISBN: 352780871X
Format: PDF, ePub
Download Now
Ob Naturwissenschaftler, Mathematiker, Ingenieur oder Datenwissenschaftler - mit MATLAB haben Sie ein mächtiges Tool in der Hand, das Ihnen die Arbeit mit Ihren Daten erleichtert. Aber wie das mit manch mächtigen Dingen so ist - es ist auch ganz schön kompliziert. Aber keine Sorge! Jim Sizemore führt Sie in diesem Buch Schritt für Schritt an das Programm heran - von der Installation und den ersten Skripten bis hin zu aufwändigen Berechnungen, der Erstellung von Grafiken und effizienter Fehlerbehebung. Sie werden begeistert sein, was Sie mit MATLAB alles anstellen können.