Neue Trends in den Sozialwissenschaften

Author: Sebastian Jäckle
Publisher: Springer-Verlag
ISBN: 3658171898
Format: PDF, ePub
Download Now
Dieses Buch stellt einige wichtige und zukunftsträchtige neuere Methoden in den Sozialwissenschaften vor. Ziel des Buches ist, einerseits deren Grundlogik zu klären und andererseits zu zeigen, inwiefern sie den klassischen Methodenkatalog sinnvoll ergänzen können. Dazu wird das Spektrum an mit diesen Techniken bearbeitbaren Fragestellungen aufgezeigt, Beispielarbeiten diskutiert, nötige Voraussetzungen z.B. in Bezug auf die Datenqualität angesprochen, und damit insgesamt das Potential dieser Verfahren veranschaulicht. Zudem gibt jeder Beitrag praktische Tipps für die Umsetzung eigener Forschungsarbeiten und anhand kommentierter Literaturempfehlungen Ansatzpunkte für die intensivere Beschäftigung mit den Methoden. Daneben wird (sofern angebracht) kurz diskutiert welche Softwarepakete sich für die Anwendung eignen.

Handbook of Cluster Analysis

Author: Christian Hennig
Publisher: CRC Press
ISBN: 1466551895
Format: PDF, Kindle
Download Now
Handbook of Cluster Analysis provides a comprehensive and unified account of the main research developments in cluster analysis. Written by active, distinguished researchers in this area, the book helps readers make informed choices of the most suitable clustering approach for their problem and make better use of existing cluster analysis tools. The book is organized according to the traditional core approaches to cluster analysis, from the origins to recent developments. After an overview of approaches and a quick journey through the history of cluster analysis, the book focuses on the four major approaches to cluster analysis. These approaches include methods for optimizing an objective function that describes how well data is grouped around centroids, dissimilarity-based methods, mixture models and partitioning models, and clustering methods inspired by nonparametric density estimation. The book also describes additional approaches to cluster analysis, including constrained and semi-supervised clustering, and explores other relevant issues, such as evaluating the quality of a cluster. This handbook is accessible to readers from various disciplines, reflecting the interdisciplinary nature of cluster analysis. For those already experienced with cluster analysis, the book offers a broad and structured overview. For newcomers to the field, it presents an introduction to key issues. For researchers who are temporarily or marginally involved with cluster analysis problems, the book gives enough algorithmic and practical details to facilitate working knowledge of specific clustering areas.

Market Segmentation Analysis

Author: Sara Dolnicar
Publisher: Springer
ISBN: 9811088187
Format: PDF, Docs
Download Now
This book is published open access under a CC BY 4.0 license. This open access book offers something for everyone working with market segmentation: practical guidance for users of market segmentation solutions; organisational guidance on implementation issues; guidance for market researchers in charge of collecting suitable data; and guidance for data analysts with respect to the technical and statistical aspects of market segmentation analysis. Even market segmentation experts will find something new, including an approach to exploring data structure and choosing a suitable number of market segments, and a vast array of useful visualisation techniques that make interpretation of market segments and selection of target segments easier. The book talks the reader through every single step, every single potential pitfall, and every single decision that needs to be made to ensure market segmentation analysis is conducted as well as possible. All calculations are accompanied not only with a detailed explanation, but also with R code that allows readers to replicate any aspect of what is being covered in the book using R, the open-source environment for statistical computing and graphics.

Handbook of Graphical Models

Author: Marloes Maathuis
Publisher: CRC Press
ISBN: 0429874243
Format: PDF, Kindle
Download Now
A graphical model is a statistical model that is represented by a graph. The factorization properties underlying graphical models facilitate tractable computation with multivariate distributions, making the models a valuable tool with a plethora of applications. Furthermore, directed graphical models allow intuitive causal interpretations and have become a cornerstone for causal inference. While there exist a number of excellent books on graphical models, the field has grown so much that individual authors can hardly cover its entire scope. Moreover, the field is interdisciplinary by nature. Through chapters by leading researchers from different areas, this handbook provides a broad and accessible overview of the state of the art. Key features: * Contributions by leading researchers from a range of disciplines * Structured in five parts, covering foundations, computational aspects, statistical inference, causal inference, and applications * Balanced coverage of concepts, theory, methods, examples, and applications * Chapters can be read mostly independently, while cross-references highlight connections The handbook is targeted at a wide audience, including graduate students, applied researchers, and experts in graphical models.

Handbook of Statistical Methods and Analyses in Sports

Author: Jim Albert
Publisher: CRC Press
ISBN: 1351678965
Format: PDF, Kindle
Download Now
This handbook will provide both overviews of statistical methods in sports and in-depth treatment of critical problems and challenges confronting statistical research in sports. The material in the handbook will be organized by major sport (baseball, football, hockey, basketball, and soccer) followed by a section on other sports and general statistical design and analysis issues that are common to all sports. This handbook has the potential to become the standard reference for obtaining the necessary background to conduct serious statistical analyses for sports applications and to appreciate scholarly work in this expanding area.

Handbook of Spatial Statistics

Author: Alan E. Gelfand
Publisher: CRC Press
ISBN: 9781420072884
Format: PDF, ePub, Docs
Download Now
Assembling a collection of very prominent researchers in the field, the Handbook of Spatial Statistics presents a comprehensive treatment of both classical and state-of-the-art aspects of this maturing area. It takes a unified, integrated approach to the material, providing cross-references among chapters. The handbook begins with a historical introduction detailing the evolution of the field. It then focuses on the three main branches of spatial statistics: continuous spatial variation (point referenced data); discrete spatial variation, including lattice and areal unit data; and spatial point patterns. The book also contains a section on space–time work as well as a section on important topics that build upon earlier chapters. By collecting the major work in the field in one source, along with including an extensive bibliography, this handbook will assist future research efforts. It deftly balances theory and application, strongly emphasizes modeling, and introduces many real data analysis examples.

Handbook of Spatial Epidemiology

Author: Andrew B. Lawson
Publisher: CRC Press
ISBN: 148225302X
Format: PDF, ePub
Download Now
Handbook of Spatial Epidemiology explains how to model epidemiological problems and improve inference about disease etiology from a geographical perspective. Top epidemiologists, geographers, and statisticians share interdisciplinary viewpoints on analyzing spatial data and space–time variations in disease incidences. These analyses can provide important information that leads to better decision making in public health. The first part of the book addresses general issues related to epidemiology, GIS, environmental studies, clustering, and ecological analysis. The second part presents basic statistical methods used in spatial epidemiology, including fundamental likelihood principles, Bayesian methods, and testing and nonparametric approaches. With a focus on special methods, the third part describes geostatistical models, splines, quantile regression, focused clustering, mixtures, multivariate methods, and much more. The final part examines special problems and application areas, such as residential history analysis, segregation, health services research, health surveys, infectious disease, veterinary topics, and health surveillance and clustering. Spatial epidemiology, also known as disease mapping, studies the geographical or spatial distribution of health outcomes. This handbook offers a wide-ranging overview of state-of-the-art approaches to determine the relationships between health and various risk factors, empowering researchers and policy makers to tackle public health problems.

Handbook of Survival Analysis

Author: John P. Klein
Publisher: CRC Press
ISBN: 146655567X
Format: PDF, Mobi
Download Now
Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians

Handbook of Mixture Analysis

Author: Sylvia Fruhwirth-Schnatter
Publisher: CRC Press
ISBN: 0429508867
Format: PDF
Download Now
Mixture models have been around for over 150 years, and they are found in many branches of statistical modelling, as a versatile and multifaceted tool. They can be applied to a wide range of data: univariate or multivariate, continuous or categorical, cross-sectional, time series, networks, and much more. Mixture analysis is a very active research topic in statistics and machine learning, with new developments in methodology and applications taking place all the time. The Handbook of Mixture Analysis is a very timely publication, presenting a broad overview of the methods and applications of this important field of research. It covers a wide array of topics, including the EM algorithm, Bayesian mixture models, model-based clustering, high-dimensional data, hidden Markov models, and applications in finance, genomics, and astronomy. Features: Provides a comprehensive overview of the methods and applications of mixture modelling and analysis Divided into three parts: Foundations and Methods; Mixture Modelling and Extensions; and Selected Applications Contains many worked examples using real data, together with computational implementation, to illustrate the methods described Includes contributions from the leading researchers in the field The Handbook of Mixture Analysis is targeted at graduate students and young researchers new to the field. It will also be an important reference for anyone working in this field, whether they are developing new methodology, or applying the models to real scientific problems.

Handbook of Mixed Membership Models and Their Applications

Author: Edoardo M. Airoldi
Publisher: CRC Press
ISBN: 1466504080
Format: PDF
Download Now
In response to scientific needs for more diverse and structured explanations of statistical data, researchers have discovered how to model individual data points as belonging to multiple groups. Handbook of Mixed Membership Models and Their Applications shows you how to use these flexible modeling tools to uncover hidden patterns in modern high-dimensional multivariate data. It explores the use of the models in various application settings, including survey data, population genetics, text analysis, image processing and annotation, and molecular biology. Through examples using real data sets, you’ll discover how to characterize complex multivariate data in: Studies involving genetic databases Patterns in the progression of diseases and disabilities Combinations of topics covered by text documents Political ideology or electorate voting patterns Heterogeneous relationships in networks, and much more The handbook spans more than 20 years of the editors’ and contributors’ statistical work in the field. Top researchers compare partial and mixed membership models, explain how to interpret mixed membership, delve into factor analysis, and describe nonparametric mixed membership models. They also present extensions of the mixed membership model for text analysis, sequence and rank data, and network data as well as semi-supervised mixed membership models.