Handbook of Laser Induced Breakdown Spectroscopy

Author: David A. Cremers
Publisher: John Wiley & Sons
ISBN: 1118567366
Format: PDF, ePub
Download Now
Starting from fundamentals and moving through a thorough discussion of equipment, methods, and techniques, the Handbook of Laser-Induced Breakdown Spectroscopy provides a unique reference source that will be of value for many years to come for this important new analysis method. The authors, with a total of over 60 years of experience in the LIBS method, use a combination of tutorial discussions ranging from basic principles up to more advanced descriptions along with extensive figures and photographs to clearly explain topics addressed in the text. In this second edition, chapters on the use of statistical analysis and advances in detection of weapons of mass destruction have been added. Tables of data related to analysis with LIBS have been updated. The Handbook of Laser-Induced Breakdown Spectroscopy, Second Edition: provides a thorough but understandable discussion of the basic principles of the method based on atomic emission spectroscopy, including recently available data leading to better characterization of the LIBS plasma; presents a discussion of the many advantages of the method along with limitations, to provide the reader a balanced overview of capabilities of the method; describes LIBS instrumentation ranging from basic set-ups to more advanced configurations; presents a comprehensive discussion of the different types of components (laser, spectrometers, detectors) that can be used for LIBS apparatuses along with suggestions for their use, as well as an up-to-date treatment of the newest advances and capabilities of LIBS instruments; presents the analytical capabilities of the method in terms of detection limits, accuracy, and precision of measurements for a variety of different sample types; discusses methods of sampling different media such as gases, liquids, and solids; presents an overview of some real-world applications of the method, with new emphasis on sampling of biologically and physically dangerous materials; provides an up-to-date list of references to LIBS literature along with the latest detection limits and a unique list of element detection limits using a uniform analysis method; provides annotated examples of LIBS spectra which can serve as references for the general reader and will be especially useful for those starting out in the field.

Handbook of Laser Induced Breakdown Spectroscopy

Author: David A. Cremers
Publisher: John Wiley & Sons
ISBN: 0470093005
Format: PDF, Kindle
Download Now
Starting from fundamentals and moving through a thorough discussion of equipment, methods, and techniques, this text provides a unique reference source for this important new analysis method. The authors use a combination of tutorial discussions ranging from basic principles up to more advanced descriptions along with extensive figures and photographs to clearly explain topics addressed in the text. It is intended that the data tables will be located within the Education section of SpectroscopyNOW.com Provides a thorough but understandable discussion of the basic principles, instrumentation, methodology, and sampling procedures of the method based on atomic emission spectroscopy. Presents a discussion of the many advantages of the method along with limitations, to provide the reader a balanced overview of capabilities of the method Presents an overview of some real-world applications of the method Provides an up-to-date list of references to LIBS literature and a unique list of element detection limits using a uniform analysis method

Laser Induced Breakdown Spectroscopy

Author: Sergio Musazzi
Publisher: Springer
ISBN: 3642450857
Format: PDF
Download Now
This book deals with the Laser-Induced Breakdown Spectroscopy (LIBS) a widely used atomic emission spectroscopy technique for elemental analysis of materials. It is based on the use of a high-power, short pulse laser excitation. The book is divided into two main sections: the first one concerning theoretical aspects of the technique, the second one describing the state of the art in applications of the technique in different scientific/technological areas. Numerous examples of state of the art applications provide the readers an almost complete scenario of the LIBS technique. The LIBS theoretical aspects are reviewed. The book helps the readers who are less familiar with the technique to understand the basic principles. Numerous examples of state of the art applications give an almost complete scenario of the LIBS technique potentiality. These examples of applications may have a strong impact on future industrial utilization. The authors made important contributions to the development of this field.

Laser Induced Breakdown Spectroscopy

Author: Jagdish P. Singh
Publisher: Elsevier
ISBN: 9780080551012
Format: PDF, ePub, Mobi
Download Now
Laser induced breakdown spectroscopy (LIBS) is basically an emission spectroscopy technique where atoms and ions are primarily formed in their excited states as a result of interaction between a tightly focused laser beam and the material sample. The interaction between matter and high-density photons generates a plasma plume, which evolves with time and may eventually acquire thermodynamic equilibrium. One of the important features of this technique is that it does not require any sample preparation, unlike conventional spectroscopic analytical techniques. Samples in the form of solids, liquids, gels, gases, plasmas and biological materials (like teeth, leaf or blood) can be studied with almost equal ease. LIBS has rapidly developed into a major analytical technology with the capability of detecting all chemical elements in a sample, of real- time response, and of close-contact or stand-off analysis of targets. The present book has been written by active specialists in this field, it includes the basic principles, the latest developments in instrumentation and the applications of LIBS . It will be useful to analytical chemists and spectroscopists as an important source of information and also to graduate students and researchers engaged in the fields of combustion, environmental science, and planetary and space exploration. * Recent research work * Possible future applications * LIBS Principles

Laser Induced Breakdown Spectroscopy

Author: Andrzej W. Miziolek
Publisher: Cambridge University Press
ISBN: 1139458310
Format: PDF, ePub, Docs
Download Now
Laser Induced Breakdown Spectroscopy (LIBS) is an emerging technique for determining elemental composition. With the ability to analyse solids, liquids and gases with little or no sample preparation, it is more versatile than conventional methods and is ideal for on-site analysis. This is a comprehensive reference explaining the fundamentals of the LIBS phenomenon, its history and its fascinating applications across eighteen chapters written by recognized leaders in the field. Over 300 illustrations aid understanding. This book will be of significant interest to researchers in chemical and materials analysis within academia and industry.

Handbook of Solid State Lasers

Author: B Denker
Publisher: Elsevier
ISBN: 0857097504
Format: PDF, Docs
Download Now
Solid-state lasers which offer multiple desirable qualities, including enhanced reliability, robustness, efficiency and wavelength diversity, are absolutely indispensable for many applications. The Handbook of solid-state lasers reviews the key materials, processes and applications of solid-state lasers across a wide range of fields. Part one begins by reviewing solid-state laser materials. Fluoride laser crystals, oxide laser ceramics, crystals and fluoride laser ceramics doped by rare earth and transition metal ions are discussed alongside neodymium, erbium and ytterbium laser glasses, and nonlinear crystals for solid-state lasers. Part two then goes on to explore solid-state laser systems and their applications, beginning with a discussion of the principles, powering and operation regimes for solid-state lasers. The use of neodymium-doped materials is considered, followed by system sizing issues with diode-pumped quasi-three level materials, erbium glass lasers, and microchip, fiber, Raman and cryogenic lasers. Laser mid-infrared systems, laser induced breakdown spectroscope and the clinical applications of surgical solid-state lasers are also explored. The use of solid-state lasers in defense programs is then reviewed, before the book concludes by presenting some environmental applications of solid-state lasers. With its distinguished editors and international team of expert contributors, the Handbook of solid-state lasers is an authoritative guide for all those involved in the design and application of this technology, including laser and materials scientists and engineers, medical and military professionals, environmental researchers, and academics working in this field. Reviews the materials used in solid-state lasers Explores the principles of solid-state laser systems and their applications Considers defence and environmental applications

Undergraduate Instrumental Analysis Sixth Edition

Author: James W. Robinson
Publisher: CRC Press
ISBN: 9780849306501
Format: PDF
Download Now
Completely rewritten, revised, and updated, this Sixth Edition reflects the latest technologies and applications in spectroscopy, mass spectrometry, and chromatography. It illustrates practices and methods specific to each major chemical analytical technique while showcasing innovations and trends currently impacting the field. Many of the chapters have been individually reviewed by teaching professors and include descriptions of the fundamental principles underlying each technique, demonstrations of the instrumentation, and new problem sets and suggested experiments appropriate to the topic. About the authors... JAMES W. ROBINSON is Professor Emeritus of Chemistry, Louisiana State University, Baton Rouge. A Fellow of the Royal Chemical Society, he is the author of over 200 professional papers and book chapters and several books including Atomic Absorption Spectroscopy and Atomic Spectroscopy. He was Executive Editor of Spectroscopy Letters and the Journal of Environmental Science and Health (both titles, Marcel Dekker, Inc.) and the Handbook of Spectroscopy and the Practical Handbook of Spectroscopy (both titles, CRC Press). He received the B.Sc. (1949), Ph.D. (1952), and D.Sc. (1978) degrees from the University of Birmingham, England. EILEEN M. SKELLY FRAME recently was Clinical Assistant Professor and Visiting Research Professor, Rensselaer Polytechnic Institute, Troy, New York. Dr. Skelly Frame has extensive practical experience in the use of instrumental analysis to characterize a wide variety of substances, from biological samples and cosmetics to high temperature superconductors, polymers, metals, and alloys. Her industrial career includes supervisory roles at GE Corporate Research and Development, Stauffer Chemical Corporate R&D, and the Research Triangle Institute. She is a member of the American Chemical Society, the Society for Applied Spectroscopy, and the American Society for Testing and Materials. Dr. Skelly Frame received the B.S. degree in chemistry from Drexel University, Philadelphia, Pennsylvania, and the Ph.D. in analytical chemistry from Louisiana State University, Baton Rouge. GEORGE M. FRAME II is Scientific Director, Chemical Biomonitoring Section of the Wadsworth Laboratory, New York State Department of Health, Albany. He has a wide range of experience in the field and has worked at the GE Corporate R&D Center, Pfizer Central Research, the U.S. Coast Guard R&D Center, the Maine Medical Center, and the USAF Biomedical Sciences Corps. He is an American Chemical Society member. Dr. Frame received the B.A. degree in chemistry from Harvard College, Cambridge, Massachusetts, and the Ph.D. degree in analytical chemistry from Rutgers University, New Brunswick, New Jersey.

Encyclopedia of Interfacial Chemistry

Author:
Publisher: Elsevier
ISBN: 0128098945
Format: PDF, Mobi
Download Now
Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these three related fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions

Laser Spectroscopy and Laser Imaging

Author: Helmut H. Telle
Publisher: CRC Press
ISBN: 1466588233
Format: PDF, ePub
Download Now
"a very valuable book for graduate students and researchers in the field of Laser Spectroscopy, which I can fully recommend" —Wolfgang Demtröder, Kaiserslautern University of Technology How would it be possible to provide a coherent picture of this field given all the techniques available today? The authors have taken on this daunting task in this impressive, groundbreaking text. Readers will benefit from the broad overview of basic concepts, focusing on practical scientific and real-life applications of laser spectroscopic analysis and imaging. Chapters follow a consistent structure, beginning with a succinct summary of key principles and concepts, followed by an overview of applications, advantages and pitfalls, and finally a brief discussion of seminal advances and current developments. The examples used in this text span physics and chemistry to environmental science, biology, and medicine. Focuses on practical use in the laboratory and real-world applications Covers the basic concepts, common experimental setups Highlights advantages and caveats of the techniques Concludes each chapter with a snapshot of cutting-edge advances This book is appropriate for anyone in the physical sciences, biology, or medicine looking for an introduction to laser spectroscopic and imaging methodologies. Helmut H. Telle is a full professor at the Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain. Ángel González Ureña is head of the Department of Molecular Beams and Lasers, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain.