Handbook of Linear Partial Differential Equations for Engineers and Scientists Second Edition

Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1466581492
Format: PDF
Download Now
Includes nearly 4,000 linear partial differential equations (PDEs) with solutions Presents solutions of numerous problems relevant to heat and mass transfer, wave theory, hydrodynamics, aerodynamics, elasticity, acoustics, electrodynamics, diffraction theory, quantum mechanics, chemical engineering sciences, electrical engineering, and other fields Outlines basic methods for solving various problems in science and engineering Contains much more linear equations, problems, and solutions than any other book currently available Provides a database of test problems for numerical and approximate analytical methods for solving linear PDEs and systems of coupled PDEs New to the Second Edition More than 700 pages with 1,500+ new first-, second-, third-, fourth-, and higher-order linear equations with solutions Systems of coupled PDEs with solutions Some analytical methods, including decomposition methods and their applications Symbolic and numerical methods for solving linear PDEs with Maple, Mathematica, and MATLAB® Many new problems, illustrative examples, tables, and figures To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the material in increasing order of complexity.

Handbook of Linear Partial Differential Equations for Engineers and Scientists

Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1420035320
Format: PDF, ePub
Download Now
Following in the footsteps of the authors' bestselling Handbook of Integral Equations and Handbook of Exact Solutions for Ordinary Differential Equations, this handbook presents brief formulations and exact solutions for more than 2,200 equations and problems in science and engineering. Parabolic, hyperbolic, and elliptic equations with constant and variable coefficients New exact solutions to linear equations and boundary value problems Equations and problems of general form that depend on arbitrary functions Formulas for constructing solutions to nonhomogeneous boundary value problems Second- and higher-order equations and boundary value problems An introductory section outlines the basic definitions, equations, problems, and methods of mathematical physics. It also provides useful formulas for expressing solutions to boundary value problems of general form in terms of the Green's function. Two supplements at the end of the book furnish more tools and information: Supplement A lists the properties of common special functions, including the gamma, Bessel, degenerate hypergeometric, and Mathieu functions, and Supplement B describes the methods of generalized and functional separation of variables for nonlinear partial differential equations.

Handbook of Linear Partial Differential Equations for Engineers and Scientists

Author: Andrei D. Polyanin
Publisher: Chapman and Hall/CRC
ISBN: 9781584882992
Format: PDF
Download Now
Following in the footsteps of the authors' bestselling Handbook of Integral Equations and Handbook of Exact Solutions for Ordinary Differential Equations, this handbook presents brief formulations and exact solutions for more than 2,200 equations and problems in science and engineering. Parabolic, hyperbolic, and elliptic equations with constant and variable coefficients New exact solutions to linear equations and boundary value problems Equations and problems of general form that depend on arbitrary functions Formulas for constructing solutions to nonhomogeneous boundary value problems Second- and higher-order equations and boundary value problems An introductory section outlines the basic definitions, equations, problems, and methods of mathematical physics. It also provides useful formulas for expressing solutions to boundary value problems of general form in terms of the Green's function. Two supplements at the end of the book furnish more tools and information: Supplement A lists the properties of common special functions, including the gamma, Bessel, degenerate hypergeometric, and Mathieu functions, and Supplement B describes the methods of generalized and functional separation of variables for nonlinear partial differential equations.

Handbook of Exact Solutions for Ordinary Differential Equations

Author: Valentin F. Zaitsev
Publisher: CRC Press
ISBN: 1420035339
Format: PDF, Mobi
Download Now
Exact solutions of differential equations continue to play an important role in the understanding of many phenomena and processes throughout the natural sciences in that they can verify the correctness of or estimate errors in solutions reached by numerical, asymptotic, and approximate analytical methods. The new edition of this bestselling handbook now contains the exact solutions to more than 6200 ordinary differential equations. The authors have made significant enhancements to this edition, including: An introductory chapter that describes exact, asymptotic, and approximate analytical methods for solving ordinary differential equations The addition of solutions to more than 1200 nonlinear equations An improved format that allows for an expanded table of contents that makes locating equations of interest more quickly and easily Expansion of the supplement on special functions This handbook's focus on equations encountered in applications and on equations that appear simple but prove particularly difficult to integrate make it an indispensable addition to the arsenals of mathematicians, scientists, and engineers alike.

Handbook of Nonlinear Partial Differential Equations Second Edition

Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 142008724X
Format: PDF, ePub, Mobi
Download Now
New to the Second Edition More than 1,000 pages with over 1,500 new first-, second-, third-, fourth-, and higher-order nonlinear equations with solutions Parabolic, hyperbolic, elliptic, and other systems of equations with solutions Some exact methods and transformations Symbolic and numerical methods for solving nonlinear PDEs with MapleTM, Mathematica®, and MATLAB® Many new illustrative examples and tables A large list of references consisting of over 1,300 sources To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology. They outline the methods in a schematic, simplified manner and arrange the material in increasing order of complexity.

Computational Partial Differential Equations

Author: Hans Petter Langtangen
Publisher: Springer Science & Business Media
ISBN: 3662011700
Format: PDF, Mobi
Download Now
Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.

Handbook of Ordinary Differential Equations

Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1351643916
Format: PDF, ePub, Mobi
Download Now
The Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems, is an exceptional and complete reference for scientists and engineers as it contains over 7,000 ordinary differential equations with solutions. This book contains more equations and methods used in the field than any other book currently available. Included in the handbook are exact, asymptotic, approximate analytical, numerical symbolic and qualitative methods that are used for solving and analyzing linear and nonlinear equations. The authors also present formulas for effective construction of solutions and many different equations arising in various applications like heat transfer, elasticity, hydrodynamics and more. This extensive handbook is the perfect resource for engineers and scientists searching for an exhaustive reservoir of information on ordinary differential equations.

Handbook of Integral Equations

Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1135436126
Format: PDF
Download Now
Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, Wiener–Hopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. With 300 additional pages, this edition covers much more material than its predecessor. New to the Second Edition • New material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions • More than 400 new equations with exact solutions • New chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs • Additional examples for illustrative purposes To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the material in increasing order of complexity. The book can be used as a database of test problems for numerical and approximate methods for solving linear and nonlinear integral equations.

Green s Functions and Linear Differential Equations

Author: Prem K. Kythe
Publisher: CRC Press
ISBN: 1439840091
Format: PDF, Docs
Download Now
Green’s Functions and Linear Differential Equations: Theory, Applications, and Computation presents a variety of methods to solve linear ordinary differential equations (ODEs) and partial differential equations (PDEs). The text provides a sufficient theoretical basis to understand Green’s function method, which is used to solve initial and boundary value problems involving linear ODEs and PDEs. It also contains a large number of examples and exercises from diverse areas of mathematics, applied science, and engineering. Taking a direct approach, the book first unravels the mystery of the Dirac delta function and then explains its relationship to Green’s functions. The remainder of the text explores the development of Green’s functions and their use in solving linear ODEs and PDEs. The author discusses how to apply various approaches to solve initial and boundary value problems, including classical and general variations of parameters, Wronskian method, Bernoulli’s separation method, integral transform method, method of images, conformal mapping method, and interpolation method. He also covers applications of Green’s functions, including spherical and surface harmonics. Filled with worked examples and exercises, this robust, self-contained text fully explains the differential equation problems, includes graphical representations where necessary, and provides relevant background material. It is mathematically rigorous yet accessible enough for readers to grasp the beauty and power of the subject.

Mathematical Handbook for Scientists and Engineers

Author: Granino A. Korn
Publisher: Courier Corporation
ISBN: 0486320235
Format: PDF, ePub, Mobi
Download Now
Convenient access to information from every area of mathematics: Fourier transforms, Z transforms, linear and nonlinear programming, calculus of variations, random-process theory, special functions, combinatorial analysis, game theory, much more.