Qualitative Textanalyse mit Topic Modellen

Author: Christian Papilloud
Publisher: Springer-Verlag
ISBN: 3658219807
Format: PDF, ePub, Docs
Download Now
Das Buch bietet eine Einführung in die qualitative Analyse von Texten für Geistes- und Sozialwissenschaften mit Topic-Modellen. Topic-Modelle sind probabilistische Modelle, die auf verschiedene Texte angewendet werden, um die wichtigsten Themen und die damit korrelierten Begriffe zu extrahieren, die in diesen enthalten sind. Diese Themen bilden die wichtigsten semantischen Strukturen von Texten ab, die graphisch dargestellt werden können und in Bezug auf unterschiedliche Variablen untersucht werden können. Diese Einführung erklärt die mathematischen Grundlagen von Topic-Modellen, wie sie technisch eingesetzt werden, und wie sie sich von anderen qualitativen Verfahren in den Geistes- und Sozialwissenschaften unterscheiden. Anhand von Beispielen aus der Kunst, der politischen Bewegungen, der Soziologiegeschichte und der Medizin werden die einzelnen Schritte und Techniken illustriert, die benutzt werden, um solche Verfahren zu konzipieren und sie einzusetzen. Der InhaltTopic-Modelle für qualitative Textanalysen • Durchführung von Topic-Modell-Analysen • Interviews in zwei Sprachen. Ein Beispiel aus der Kunstsoziologie • Postkarten. Topic-Modell-Analyse von dreien Texten • Textsammlung. Ein Beispiel aus der Geschichte der Soziologie • Semantische Indikatoren in quantitativen Umfragen. Ein Beispiel aus der Nanomedizin Die AutorenProf. Dr. Christian Papilloud ist Professor für Soziologie der Martin-Luther Universität Halle-Wittenberg. PD Dr. Alexander Hinneburg ist Dozent am Fachbereich Informatik der Martin-Luther Universität Halle-Wittenberg.

Handbook of Mixed Membership Models and Their Applications

Author: Edoardo M. Airoldi
Publisher: CRC Press
ISBN: 1466504099
Format: PDF, ePub
Download Now
In response to scientific needs for more diverse and structured explanations of statistical data, researchers have discovered how to model individual data points as belonging to multiple groups. Handbook of Mixed Membership Models and Their Applications shows you how to use these flexible modeling tools to uncover hidden patterns in modern high-dimensional multivariate data. It explores the use of the models in various application settings, including survey data, population genetics, text analysis, image processing and annotation, and molecular biology. Through examples using real data sets, you’ll discover how to characterize complex multivariate data in: Studies involving genetic databases Patterns in the progression of diseases and disabilities Combinations of topics covered by text documents Political ideology or electorate voting patterns Heterogeneous relationships in networks, and much more The handbook spans more than 20 years of the editors’ and contributors’ statistical work in the field. Top researchers compare partial and mixed membership models, explain how to interpret mixed membership, delve into factor analysis, and describe nonparametric mixed membership models. They also present extensions of the mixed membership model for text analysis, sequence and rank data, and network data as well as semi-supervised mixed membership models.

Handbook of Graphical Models

Author: Marloes Maathuis
Publisher: CRC Press
ISBN: 0429874243
Format: PDF, ePub, Docs
Download Now
A graphical model is a statistical model that is represented by a graph. The factorization properties underlying graphical models facilitate tractable computation with multivariate distributions, making the models a valuable tool with a plethora of applications. Furthermore, directed graphical models allow intuitive causal interpretations and have become a cornerstone for causal inference. While there exist a number of excellent books on graphical models, the field has grown so much that individual authors can hardly cover its entire scope. Moreover, the field is interdisciplinary by nature. Through chapters by leading researchers from different areas, this handbook provides a broad and accessible overview of the state of the art. Key features: * Contributions by leading researchers from a range of disciplines * Structured in five parts, covering foundations, computational aspects, statistical inference, causal inference, and applications * Balanced coverage of concepts, theory, methods, examples, and applications * Chapters can be read mostly independently, while cross-references highlight connections The handbook is targeted at a wide audience, including graduate students, applied researchers, and experts in graphical models.

Handbook of Statistical Methods and Analyses in Sports

Author: Jim Albert
Publisher: CRC Press
ISBN: 1351678965
Format: PDF
Download Now
This handbook will provide both overviews of statistical methods in sports and in-depth treatment of critical problems and challenges confronting statistical research in sports. The material in the handbook will be organized by major sport (baseball, football, hockey, basketball, and soccer) followed by a section on other sports and general statistical design and analysis issues that are common to all sports. This handbook has the potential to become the standard reference for obtaining the necessary background to conduct serious statistical analyses for sports applications and to appreciate scholarly work in this expanding area.

Handbook of Markov Chain Monte Carlo

Author: Steve Brooks
Publisher: CRC Press
ISBN: 1420079425
Format: PDF, ePub, Mobi
Download Now
Since their popularization in the 1990s, Markov chain Monte Carlo (MCMC) methods have revolutionized statistical computing and have had an especially profound impact on the practice of Bayesian statistics. Furthermore, MCMC methods have enabled the development and use of intricate models in an astonishing array of disciplines as diverse as fisheries science and economics. The wide-ranging practical importance of MCMC has sparked an expansive and deep investigation into fundamental Markov chain theory. The Handbook of Markov Chain Monte Carlo provides a reference for the broad audience of developers and users of MCMC methodology interested in keeping up with cutting-edge theory and applications. The first half of the book covers MCMC foundations, methodology, and algorithms. The second half considers the use of MCMC in a variety of practical applications including in educational research, astrophysics, brain imaging, ecology, and sociology. The in-depth introductory section of the book allows graduate students and practicing scientists new to MCMC to become thoroughly acquainted with the basic theory, algorithms, and applications. The book supplies detailed examples and case studies of realistic scientific problems presenting the diversity of methods used by the wide-ranging MCMC community. Those familiar with MCMC methods will find this book a useful refresher of current theory and recent developments.

Handbook of Missing Data Methodology

Author: Geert Molenberghs
Publisher: CRC Press
ISBN: 1439854629
Format: PDF, ePub, Mobi
Download Now
Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research. Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods. The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters. Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.

R in a Nutshell

Author: Joseph Adler
Publisher: O'Reilly Germany
ISBN: 3897216507
Format: PDF
Download Now
Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.