Handbook of Polymer Modified Concrete and Mortars

Author: Yoshihiko Ohama
Publisher: William Andrew
ISBN: 0815517696
Format: PDF
Download Now
Mortar and concrete made with portland cement has been a popular construction material in the world for the past 170 years or more. However, cement mortar and concrete have some disadvantages such as delayed hardening, low tensile strength, large drying shrinkage and low chemical resistance. To reduce these disadvantages, polymers have been utilized as an additive. Polymer-modified or polymer cement mortar (PCM) and concrete (PCC) are the materials which are made by partially replacing the cement hydrate binders of conventional cement mortar or concrete, with polymers. This book deals with the principles of polymer modification for cement composites, the process technology, properties and applications of the polymer-modified mortar and concrete, and special polymer-modified systems such as M DF cement, antiwashout underwater concrete, polymer-ferrocement, and artificial I wood. The polymeric admixtures or cement modifiers include latexes or emulsions, redispersible polymer powders, water-soluble polymers, liquid resins and monomers. This book describes the current knowledge and information of polymer-modified mortars and concretes, and discusses or reviews the following items in detail: 1. Principles of polymer modification for cement composites. 2. Process technology of polymer-modified mortars and concretes. 3. Properties of polymer-modified mortars and concretes. 4. Applications of polymer-modified mortars and concretes. 5. Special polymer-modified systems such as MDF cements, antiwashout underwater concretes, polymer-ferrocements, and artificial woods.

Handbook of Adhesives Raw Materials

Author: Ernest W. Flick
Publisher: William Andrew
ISBN: 081551185X
Format: PDF, ePub
Download Now
Contains descriptions of more than 2,200 materials currently available to the adhesives industry. The book includes Suppliers' Addresses and a Trade Name Index. Projected 1995 adhesives sales are $12 billion, with steady growth and expansion into new areas.

Handbook of Analytical Techniques in Concrete Science and Technology

Author: V.S. Ramachandran
Publisher: Elsevier
ISBN: 0815517386
Format: PDF, ePub, Docs
Download Now
Measuring the long-term durability of new types of concrete and concrete technologies is crucial to their acceptance in the marketplace. This long-needed handbook of analytical techniques provides a complete reference to the cutting-edge procedures used to test today's innovative materials. Ranging from chemical and thermal analysis, to IR and Nuclear Magnetic Resonance spectroscopy, to Scanning Electron Microscopy, x-ray diffraction, computer modeling and more, the book provides first-hand explanations of modern methodsùcontributed by 24 leading scientists, many of whom actually developed or refined the techniques. The book includes many analytic techniques, applied to a wide range of organic, inorganic and composite materials and additives. Perfect for practitioners, students, and professional standards writers, the handbook is highly useful for scrutinizing materials in a variety of environments. It takes into account the many factors that affect the qualities of concreteùtemperature, pore and pore-size distribution, surface area, and exposureùgathering diverse evaluation methods into one convenient resource.

Waste Materials Used in Concrete Manufacturing

Author: Satish Chandra
Publisher: Elsevier
ISBN: 0815519516
Format: PDF
Download Now
The environmental aspects involved in the production and use of cement, concrete and other building materials are of growing importance. CO2 emissions are 0.8-1.3 ton/ton of cement production in dry process. SO2 emission is also very high, but is dependent upon the type of fuel used. Energy consumption is also very high at 100-150 KWT/ton of cement produced. It is costly to erect new cement plants. Substitution of waste materials will conserve dwindling resources, and will avoid the environmental and ecological damages caused by quarrying and exploitation of the raw materials for making cement. To some extent, it will help to solve the problem otherwise encountered in disposing of the wastes. Partial replacement of clinker or portland cement by slag, fly ash, silica fume and natural rock minerals illustrates these aspects. Partial replacement by natural materials that require little or no processing, such as pozzolans, calcined clays, etc., saves energy and decreases emission of gases. The output of waste materials suitable as cement replacement (slags, fly ashes, silica fumes, rice husk ash, etc.) is more than double that of cement production. These waste materials can partly be used, or processed, to produce materials suitable as aggregates or fillers in concrete. These can also be used as clinker raw materials, or processed into cementing systems. New grinding and mixing technology will make the use of these secondary materials simpler. Developments in chemical admixtures: superplasticizers, air entraining agents, etc., help in controlling production techniques and, in achieving the desired properties in concrete. Use of waste products is not only a partial solution to environmental and ecological problems; it significantly improves the microstructure, and consequently the durability properties of concrete, which are difficult to achieve by the use of pure portland cement. The aim is not only to make the cements and concrete less expensive, but to provide a blend of tailored properties of waste materials and portland cements suitable for specified purpose. This requires a better understanding of chemistry, and materials science. There is an increasing demand for better understanding of material properties, as well as better control of the microstructure developing in the construction material, to increase durability. The combination of different binders and modifiers to produce cheaper and more durable building materials will solve to some extent the ecological and environmental problems.

Handbook of Thermal Analysis of Construction Materials

Author: V.S. Ramachandran
Publisher: William Andrew
ISBN: 0815517750
Format: PDF, Docs
Download Now
This comprehensive book containing essential information on the applicability of thermal analysis techniques to evaluate inorganic and organic materials in construction technology should serve as a useful reference for the scientist, engineer, construction technologist, architect, manufacturer, and user of construction materials, standard-writing bodies, and analytical chemists. The material scientists at the National Research Council of Canada have established one of the best thermal analysis laboratories in the world. Various types of thermal analysis techniques have been applied successfully to the investigation of inorganic and organic construction materials. These studies have provided important information on the characterization of raw as well as finished materials, quality control, quantitative estimation, interrelationships between physical, chemical, mechanical, and durability characteristics. Information on the application of thermal analysis to construction materials is dispersed in literature and hence the IRC scientists embarked on producing a handbook, the first of its kind, incorporating the latest knowledge available in this field of activity. Almost all important construction materials have been included.