Handbook of Process Integration PI

Author: Jiří J Klemeš
Publisher: Elsevier
ISBN: 0857097253
Format: PDF, ePub, Mobi
Download Now
Since its first development in the 1970s, Process Integration (PI) has become an important methodology in achieving more energy efficient processes. This pioneering handbook brings together the leading scientists and researchers currently contributing to PI development, pooling their expertise and specialist knowledge to provide readers with a comprehensive and up-to-date guide to the latest PI research and applications. After an introduction to the principles of PI, the book reviews a wide range of process design and integration topics ranging from heat and utility systems to water, recycling, waste and hydrogen systems. The book considers Heat Integration, Mass Integration and Extended PI as well as a series of applications and case studies. Chapters address not just operating and capital costs but also equipment design and operability issues, through to buildings and supply chains. With its distinguished editor and international team of expert contributors, Handbook of Process Integration (PI) is a standard reference work for managers and researchers in all energy-intensive industries, as well as academics with an interest in them, including those designing and managing oil refineries, petrochemical and power plants, as well as paper/pulp, steel, waste, food and drink processors. This pioneering handbook provides a comprehensive and up-to-date guide to the latest process integration research and applications Reviews a wide range of process design and integration topics ranging from heat and utility systems to water, recycling, waste and hydrogen systems Chapters also address equipment design and operability issues, through to buildings and supply chains

Process Integration and Intensification

Author: Jirí Jaromír Klemeš
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110306859
Format: PDF, ePub, Docs
Download Now
Process Integration and Intensification (PII) is one of the most timely topics in chemical and process engineering leading to energy efficient, substantially smaller, cleaner, safer and optimized processes. The book covers optimization fundamentals and industrial applications. It is an authoritative overview meant to help graduate students as well as professionals to effectively apply PII in plant design and operation.

Sustainable Process Integration and Intensification

Author: Jirí Jaromír Klemeš
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311053536X
Format: PDF, ePub
Download Now
In its second edition, Sustainable Process Integration and Intensification continues the presentation of fundamentals of key areas of both fields. Thoroughly updated and extended to include the latest developments, the reader also finds illustrated working sessions for deeper understanding of the taught materials.The book is addressed to graduate students as well as professionals to help the effectively application in plant design and operation.

Advances in Thermal Energy Storage Systems

Author: Luisa F. Cabeza
Publisher: Elsevier
ISBN: 1782420967
Format: PDF, Mobi
Download Now
Thermal energy storage (TES) technologies store thermal energy (both heat and cold) for later use as required, rather than at the time of production. They are therefore important counterparts to various intermittent renewable energy generation methods and also provide a way of valorising waste process heat and reducing the energy demand of buildings. This book provides an authoritative overview of this key area. Part one reviews sensible heat storage technologies. Part two covers latent and thermochemical heat storage respectively. The final section addresses applications in heating and energy systems. Reviews sensible heat storage technologies, including the use of water, molten salts, concrete and boreholes Describes latent heat storage systems and thermochemical heat storage Includes information on the monitoring and control of thermal energy storage systems, and considers their applications in residential buildings, power plants and industry

Integrated Planning of Heat Flows in Production Systems

Author: Denis Kurle
Publisher: Springer
ISBN: 3319704400
Format: PDF
Download Now
The book presents an integrated planning concept for heat flows in production systems comprising various short term and long term related models. Detailed explanations about the modeling and implementation of all relevant system elements such as generic and specific machines types, technical building services (TBS), production planning and control aspects, heat storage units and (waste) heat designs follow. Due to resulting amounts of data, the concept foresees system level appropriate indicators and visualizations for a facilitatedevaluation of the model results. An application procedure embeds and describes all models as well.Three exemplary application cases demonstrate the applicability, including the manufacturing of shafts for automotive transmissions, a cooling water system and an academic learning environment.

Food Waste Recovery

Author: Charis Michel Galanakis
Publisher: Academic Press
ISBN: 0128004193
Format: PDF, Mobi
Download Now
Food Waste Recovery: Processing Technologies and Industrial Techniques acts as a guide to recover valuable components of food by-products and recycle them inside the food chain, in an economic and sustainable way. The book investigates all the relevant recovery issues and compares different techniques to help you advance your research and develop new applications. Strong coverage of the different technologies is included, while keeping a balance between the characteristics of current conventional and emerging technologies. This is an essential reference for research outcomes. Presents a holistic methodology (the so-called "5-Stages Universal Recovery Process") and a general approach (the so-called "Universal Recovery Strategy") to ensure optimized management of the available technologies and recapture of different high added-value compounds from any waste source Includes characteristics, safety and cost issues of conventional and emerging technologies, the benefits of their application in industry, and commercialized applications of real market products Demonstrates all aspects of the recovery process such as preservation of the substrate, yield optimization, preservation of functionality of the target compounds during processing, and more

Bioalcohol Production

Author: Keith W. Waldron
Publisher: Elsevier
ISBN: 1845699610
Format: PDF, Docs
Download Now
Bioethanol is one of the main biofuels currently used as a petroleum-substitute in transport applications. However, conflicts over food supply and land use have made its production and utilisation a controversial topic. Second generation bioalcohol production technology, based on (bio)chemical conversion of non-food lignocellulose, offers potential advantages over existing, energy-intensive bioethanol production processes. Food vs. fuel pressures may be reduced by utilising a wider range of lignocellulosic biomass feedstocks, including energy crops, cellulosic residues, and, particularly, wastes. Bioalcohol production covers the process engineering, technology, modelling and integration of the entire production chain for second generation bioalcohol production from lignocellulosic biomass. Primarily reviewing bioethanol production, the book’s coverage extends to the production of longer-chain bioalcohols which will be elemental to the future of the industry. Part one reviews the key features and processes involved in the pretreatment and fractionation of lignocellulosic biomass for bioalcohol production, including hydrothermal and thermochemical pretreatment, and fractionation to separate out valuable process feedstocks. Part two covers the hydrolysis (saccharification) processes applicable to pretreated feedstocks. This includes both acid and enzymatic approaches and also importantly covers the development of particular enzymes to improve this conversion step. This coverage is extended in Part three, with chapters reviewing integrated hydrolysis and fermentation processes, and fermentation and co-fermentation challenges of lignocellulose-derived sugars, as well as separation and purification processes for bioalcohol extraction. Part four examines the analysis, monitoring and modelling approaches relating to process and quality control in the pretreatment, hydrolysis and fermentation steps of lignocellulose-to-bioalcohol production. Finally, Part five discusses the life-cycle assessment of lignocellulose-to-bioalcohol production, as well as the production of valuable chemicals and longer-chain alcohols from lignocellulosic biomass. With its distinguished international team of contributors, Bioalcohol production is a standard reference for fuel engineers, industrial chemists and biochemists, plant scientists and researchers in this area. Provides an overview of the life-cycle assessment of lignocelluloses-to-bioalcohol production Reviews the key features and processes involved in the pre-treatment and fractionation of lignocellulosic biomass for bioalcohol production Examines the analysis, monitoring and modelling approaches relating to process and quality control in pre-treatment, hydrolysis and fermentation

Pollution Prevention through Process Integration

Author: Mahmoud M. El-Halwagi
Publisher: Elsevier
ISBN: 9780080514185
Format: PDF, Kindle
Download Now
The environmental impact of industrial waste is one of the most serious challenges facing the chemical process industries. From a focus on end-of-pipe treatment in the 1970s, chemical manufacturers have increasinglyimplemented pollution prevention policies in which pollutants are mitigated at the source or separated and recovered and then reused or sold. This book is the first to present systematic techniques for cost-effective pollution prevention, altering what has been an art that depends on experience and subjective opinion into a science rooted in fundamental engineering principles and process integration. Step-by-step procedures are presented that are widely applicable to the chemical, petrochemical, petroleum, pharmaceutical, food, and metals industries. Various levels of sophistication ranging from graphical methods to algebraic procedures and mathematical optimization, numerous applications and case studies, and integrated software for optimizing waste recovery systems make Pollution Prevention through Process Integration: Systematic Design Tools a must read for a wide spectrum of practicing engineers, environmental scientists, plant managers, advanced undergraduate and graduate students, and researchers in the areas of pollution prevention andprocess integration. Allows the reader to establish pollution-prevention targets for a process and then develop implementable, cost-effective solutions Contains step-by-step procedures that can be applied to environmental problems in a wide variety of process industries Integrates pollution prevention with other process objectives Author is internationally recognized for pioneering work in developing mass integration science and technology

Energy

Author: Yaşar Demirel
Publisher: Springer Science & Business Media
ISBN: 1447123727
Format: PDF, Kindle
Download Now
Understanding the sustainable use of energy in various processes is an integral part of engineering and scientific studies, which rely on a sound knowledge of energy systems. Whilst many institutions now offer degrees in energy-related programs, a comprehensive textbook, which introduces and explains sustainable energy systems and can be used across engineering and scientific fields, has been lacking. Energy: Production, Conversion, Storage, Conservation, and Coupling provides the reader with a practical understanding of these five main topic areas of energy including 130 examples and over 600 practice problems. Each chapter contains a range of supporting figures, tables, thermodynamic diagrams and charts, while the Appendix supplies the reader with all the necessary data including the steam tables. This new textbook presents a clear introduction of basic vocabulary, properties, forms, sources, and balances of energy before advancing to the main topic areas of: • Energy production and conversion in important physical, chemical, and biological processes, • Conservation of energy and its impact on sustainability, • Various forms of energy storage, and • Energy coupling and bioenergetics in living systems. A solution manual for the practice problems of the textbook is offered for the instructor. Energy: Production, Conversion, Storage, Conservation, and Coupling is a comprehensive source, study guide, and course supplement for both undergraduates and graduates across a range of engineering and scientific disciplines. Resources including the solution manual for this textbook are available for instructors on sending a request to Dr. Yaoar Demirel at [email protected]

Alternative Energy Sources and Technologies

Author: Mariano Martín
Publisher: Springer
ISBN: 3319287524
Format: PDF, Mobi
Download Now
Presenting a comprehensive analysis of the use of alternative sources of energy and technologies to produce fuels and power, this book describes the energy value chain from harvesting the raw material, (i.e solar, wind, biomass or shale gas) followed by analysis of the processing steps into power, fuels and/or chemicals and finally the distribution of the products. Featuring an examination of the techno-economic processes and integration opportunities which can add value to by-products or promote the use of different sources of energy within the same facility, this book looks at the tools that can make this integration possible as well as utilising a real world case study. The case study of the operation of “El hierro” island is used as an example of the current effort towards more efficient use of the resources available. Tackling head on the open challenges of the supply, the variability of the source and its prediction, the description of novel processes that are being developed and evaluated for their transformation as well as how we can distribute them to the consumer and how we can integrate the new chemicals, fuels and power within the current system and infrastructure, the book takes a process based perspective with such an approach able to help us in the use and integration of these sources of energy and novel technologies.