Helium Ion Microscopy

Author: Gregor Hlawacek
Publisher: Springer
ISBN: 3319419900
Format: PDF, ePub
Download Now
This book covers the fundamentals of Helium Ion Microscopy (HIM) including the Gas Field Ion Source (GFIS), column and contrast formation. It also provides first hand information on nanofabrication and high resolution imaging. Relevant theoretical models and the existing simulation approaches are discussed in an extra section. The structure of the book allows the novice to get acquainted with the specifics of the technique needed to understand the more applied chapters in the second half of the volume. The expert reader will find a complete reference of the technique covering all important applications in several chapters written by the leading experts in the field. This includes imaging of biological samples, resist and precursor based nanofabrication, applications in semiconductor industry, using Helium as well as Neon and many more. The fundamental part allows the regular HIM user to deepen his understanding of the method. A final chapter by Bill Ward, one of the pioneers of HIM, covering the historical developments leading to the existing tool complements the content.

Helium Ion Microscopy

Author: David C. Joy
Publisher: Springer Science & Business Media
ISBN: 1461486602
Format: PDF, ePub, Mobi
Download Now
Helium Ion Microscopy: Principles and Applications describes the theory and discusses the practical details of why scanning microscopes using beams of light ions – such as the Helium Ion Microscope (HIM) – are destined to become the imaging tools of choice for the 21st century. Topics covered include the principles, operation, and performance of the Gaseous Field Ion Source (GFIS), and a comparison of the optics of ion and electron beam microscopes including their operating conditions, resolution, and signal-to-noise performance. The physical principles of Ion-Induced Secondary Electron (iSE) generation by ions are discussed, and an extensive database of iSE yields for many elements and compounds as a function of incident ion species and its energy is included. Beam damage and charging are frequently outcomes of ion beam irradiation, and techniques to minimize such problems are presented. In addition to imaging, ions beams can be used for the controlled deposition, or removal, of selected materials with nanometer precision. The techniques and conditions required for nanofabrication are discussed and demonstrated. Finally, the problem of performing chemical microanalysis with ion beams is considered. Low energy ions cannot generate X-ray emissions, so alternative techniques such as Rutherford Backscatter Imaging (RBI) or Secondary Ion Mass Spectrometry (SIMS) are examined.

The Nanoscience and Technology of Renewable Biomaterials

Author: Lucian A. Lucia
Publisher: John Wiley & Sons
ISBN: 9781444307481
Format: PDF, ePub, Docs
Download Now
The unique nanoscale properties of renewable biomaterials presentvaluable opportunities in the field of nanoscience and technology.Lignocellulosic biomass is an important industrial resource whichcan be used for the production of highly efficient andenvironmentally sustainable nanomaterials. The Nanoscience and Technology of Renewable Biomaterialspresents the latest advances in biomass nanotechnology, includingleading research from academia and industry, as well as a futurevision for the nanotechnology of forest products. Topics covered include: A fundamental review of the relationship betweennanotechnology and lignocellulosic biomass Characterization methods for biomass on the nanometerscale Cellulose, hemicelluloses and lignin as nanoscopicbiomaterials-physical features, chemical properties and potentialnanoproducts Nanoscale surface engineering Renewable materials as scaffolds for tissue engineering Nanoscopically-controlled drug delivery This book will be a valuable resource for chemists, chemicalengineers, bioscience researchers and materials scientists who areinterested in harnessing the nanotechnological features ofrenewable biomaterials.

Surface Science Techniques

Author: Gianangelo Bracco
Publisher: Springer Science & Business Media
ISBN: 3642342434
Format: PDF
Download Now
The book describes the experimental techniques employed to study surfaces and interfaces. The emphasis is on the experimental method. Therefore all chapters start with an introduction of the scientific problem, the theory necessary to understand how the technique works and how to understand the results. Descriptions of real experimental setups, experimental results at different systems are given to show both the strength and the limits of the technique. In a final part the new developments and possible extensions of the techniques are presented. The included techniques provide microscopic as well as macroscopic information. They cover most of the techniques used in surface science.

Nanotubes and Nanosheets

Author: Ying (Ian) Chen
Publisher: CRC Press
ISBN: 1466598107
Format: PDF, ePub
Download Now
Reveals Innovative Research on BN Nanotubes and Nanosheets Nanotubes and Nanosheets: Functionalization and Applications of Boron Nitride and Other Nanomaterials is the first book devoted to nanotubes and nanosheets made of boron nitride (BN). It shows how the properties of BN nanotubes and nanosheets have led to many exciting applications where carbon (C) materials cannot be used, including high-temperature metal-ceramic-based composites, substrates for graphene and other semiconducting layers in electronic devices, reusable absorbents for oil and other contaminants, dry solid lubricants, and biomedical applications. Researchers working on various aspects of BN nanomaterials share their knowledge and current work on the applications of BN nanotubes and nanosheets. They describe numerous applications, including BN nanotube-reinforced metal-ceramic-based composites, field emission, desalination, cleanup of oil spillages, biosensing and bioimaging, drug delivery, biomedical applications, and energy storage using BCN and TiO2 nanorods and nanosheets as electrode materials. The book also covers C and other nanotubes and nanosheets to give readers a broad view of the latest nanomaterials research.

Progress in Nanoscale Characterization and Manipulation

Author: Rongming Wang
Publisher: Springer
ISBN: 9789811304538
Format: PDF
Download Now
This book focuses on charged-particle optics and microscopy, as well as their applications in the materials sciences. Presenting a range of cutting-edge theoretical and methodological advances in electron microscopy and microanalysis, and examining their crucial roles in modern materials research, it offers a unique resource for all researchers who work in ultramicroscopy and/or materials research. The book addresses the growing opportunities in this field and introduces readers to the state of the art in charged-particle microscopy techniques. It showcases recent advances in scanning electron microscopy, transmission electron microscopy and helium ion microscopy, including advanced spectroscopy, spherical-corrected microscopy, focused-ion imaging and in-situ microscopy. Covering these and other essential topics, the book is intended to facilitate the development of microscopy techniques, inspire young researchers, and make a valuable contribution to the field.

Atom Probe Tomography

Author: Michael K. Miller
Publisher: Springer
ISBN: 148997430X
Format: PDF, ePub, Mobi
Download Now
Nanocharacterization by Atom Probe Tomography is a practical guide for researchers interested atomic level characterization of materials with atom probe tomography. Readers will find descriptions of the atom probe instrument and atom probe tomography technique, field ionization, field evaporation and field ion microscopy. The fundamental underlying physics principles are examined, in addition to data reconstruction and visualization, statistical data analysis methods and specimen preparation by electropolishing and FIB-based techniques. A full description of the local electrode atom probe – a new state-of-the-art instrument – is also provided, along with detailed descriptions and limitations of laser pulsing as a method to field evaporate atoms. Valuable coverage of the new ionization theory is also included, which underpins the overall technique.

Nanostructuring Operations in Nanoscale Science and Engineering

Author: Kal Sharma
Publisher: McGraw Hill Professional
ISBN: 0071626093
Format: PDF, Mobi
Download Now
State-of-the-art nanostructuring principles, methods, and aplications Synthesize, characterize, and deploy highly miniaturized components using the theories and techniques contained in this comprehensive resource. Written by a nanotechnology expert, this authoritative volume covers the latest advances along with detailed schematics and real-world applications in engineering and the life sciences. Inside, 37 different nanostructuring methods and 16 different kinds of nanostructures are discussed. Nanostructuring Operations in Nanoscale Science and Engineering explains how to manufacture high-purity fullerenes, assemble carbon nanotubes, and use nanofluids and nanowires. You will also learn how to develop high-performance biochips, work with biomimetics, and design molecular machines. The book includes 540 end-of-chapter review questions to reinforce the material covered. Learn how to: Produce fullerenes using metallurgic, solar, and electric arc methods Use arc discharge, laser ablation, CVD, and HIPCO to create CNTs Build nanostructures with vacuum synthesis, gas evaporation, and lithography Work with quantum dots, polymer thin films, nanofluids, and nanoceramics Develop biochips, biological nanovalves, and molecular machines Mimic biological characteristics and organic self-repair using biomimetics Model nanoscale effects with relativistic and Laplace transforms Characterize nanoscale material using x-ray and helium ion microscope

Handbook of Microscopy for Nanotechnology

Author: Nan Yao
Publisher: Springer Science & Business Media
ISBN: 9781402080036
Format: PDF, ePub, Mobi
Download Now
Aims to provide an overview of the basics and applications of various microscopy techniques for nanotechnology. Topics covered include: scanning near field optical microscopy, confocal optical microscopy, atomic force microscopy, magnetic force microscopy, scanning turning microscopy, high-resolution scanning electron microscopy, and more.