Hierarchical Linear Modeling

Author: G. David Garson
Publisher: SAGE
ISBN: 1412998859
Format: PDF, Mobi
Download Now
This book provides a brief, easy-to-read guide to implementing hierarchical linear modelling using the three leading software platforms, followed by a set of application articles based on recent work published in leading journals and as part of doctoral dissertations. The "guide" portion consists of three chapters by the editor, covering basic to intermediate use of SPSS, SAS, and HLM for purposes for hierarchical linear modelling, while the "applications" portion consists of a dozen contributions in which the authors emphasize how-to and methodological aspects and show how they have used these techniques in practice.

Hierarchical Linear Modeling

Author: G. David Garson
Publisher: SAGE Publications
ISBN: 1452289328
Format: PDF, Docs
Download Now
This book provides a brief, easy-to-read guide to implementing hierarchical linear modeling using three leading software platforms, followed by a set of original how-to applications articles following a standardard instructional format. The "guide" portion consists of five chapters by the editor, providing an overview of HLM, discussion of methodological assumptions, and parallel worked model examples in SPSS, SAS, and HLM software. The "applications" portion consists of ten contributions in which authors provide step by step presentations of how HLM is implemented and reported for introductory to intermediate applications.

Hierarchical Linear Modeling

Author: G. David Garson
Publisher: SAGE Publications
ISBN: 1452280983
Format: PDF, ePub, Docs
Download Now
This book provides a brief, easy-to-read guide to implementing hierarchical linear modeling using three leading software platforms, followed by a set of original how-to applications articles following a standardard instructional format. The "guide" portion consists of five chapters by the editor, providing an overview of HLM, discussion of methodological assumptions, and parallel worked model examples in SPSS, SAS, and HLM software. The "applications" portion consists of ten contributions in which authors provide step by step presentations of how HLM is implemented and reported for introductory to intermediate applications.

Hierarchical Linear Models

Author: Stephen W. Raudenbush
Publisher: SAGE
ISBN: 9780761919049
Format: PDF, Docs
Download Now
Popular in its first edition for its rich, illustrative examples and lucid explanations of the theory and use of hierarchical linear models (HLM), the book has been updated to include: an intuitive introductory summary of the basic procedures for estimation and inference used with HLM models that only requires a minimal level of mathematical sophistication; a new section on multivariate growth models; a discussion of research synthesis or meta-analysis applications; aata analytic advice on centering of level-1 predictors, and new material on plausible value intervals and robust standard estimators.

HLM 6

Author: Stephen W. Raudenbush
Publisher: Scientific Software International
ISBN: 9780894980541
Format: PDF, Mobi
Download Now

Multilevel Models

Author: Jichuan Wang
Publisher: Walter de Gruyter
ISBN: 3110267705
Format: PDF, ePub
Download Now
This book covers a broad range of topics about multilevel modeling. The goal is to help readers to understand the basic concepts, theoretical frameworks, and application methods of multilevel modeling. It is at a level also accessible to non-mathematicians, focusing on the methods and applications of various multilevel models and using the widely used statistical software SAS®. Examples are drawn from analysis of real-world research data.

Multilevel Modeling of Educational Data

Author: Ann A. O'Connell
Publisher: IAP
ISBN: 1607527294
Format: PDF, Kindle
Download Now
(sponsored by the Educational Statisticians, SIG) Multilevel Modeling of Educational Data, coedited by Ann A. O’Connell, Ed.D., and D. Betsy McCoach, Ph.D., is the next volume in the series: Quantitative Methods in Education and the Behavioral Sciences: Issues, Research and Teaching (Information Age Publishing), sponsored by the Educational Statisticians' Special Interest Group (EdStat SIG) of the American Educational Research Association. The use of multilevel analyses to examine effects of groups or contexts on individual outcomes has burgeoned over the past few decades. Multilevel modeling techniques allow educational researchers to more appropriately model data that occur within multiple hierarchies (i.e. the classroom, the school, and/or the district). Examples of multilevel research problems involving schools include establishing trajectories of academic achievement for children within diverse classrooms or schools or studying schoollevel characteristics on the incidence of bullying. Multilevel models provide an improvement over traditional singlelevel approaches to working with clustered or hierarchical data; however, multilevel data present complex and interesting methodological challenges for the applied education research community. In keeping with the pedagogical focus for this book series, the papers this volume emphasize applications of multilevel models using educational data, with chapter topics ranging from basic to advanced. This book represents a comprehensive and instructional resource text on multilevel modeling for quantitative researchers who plan to use multilevel techniques in their work, as well as for professors and students of quantitative methods courses focusing on multilevel analysis. Through the contributions of experienced researchers and teachers of multilevel modeling, this volume provides an accessible and practical treatment of methods appropriate for use in a first and/or second course in multilevel analysis. A supporting website links chapter examples to actual data, creating an opportunity for readers to reinforce their knowledge through handson data analysis. This book serves as a guide for designing multilevel studies and applying multilevel modeling techniques in educational and behavioral research, thus contributing to a better understanding of and solution for the challenges posed by multilevel systems and data.

Multilevel Modeling

Author: Douglas A. Luke
Publisher: SAGE
ISBN: 9780761928799
Format: PDF, Kindle
Download Now
A practical introduction to multi-level modelling, this book offers an introduction to HLM & illustrations of how to use this technique to build models for hierarchical & longitudinal data.

Multilevel Analysis

Author: Joop J. Hox
Publisher: Routledge
ISBN: 1317308670
Format: PDF, Mobi
Download Now
Applauded for its clarity, this accessible introduction helps readers apply multilevel techniques to their research. The book also includes advanced extensions, making it useful as both an introduction for students and as a reference for researchers. Basic models and examples are discussed in nontechnical terms with an emphasis on understanding the methodological and statistical issues involved in using these models. The estimation and interpretation of multilevel models is demonstrated using realistic examples from various disciplines including psychology, education, public health, and sociology. Readers are introduced to a general framework on multilevel modeling which covers both observed and latent variables in the same model, while most other books focus on observed variables. In addition, Bayesian estimation is introduced and applied using accessible software.

Linear Mixed Models

Author: Brady T. West
Publisher: CRC Press
ISBN: 1466560991
Format: PDF, Mobi
Download Now
Highly recommended by JASA, Technometrics, and other journals, the first edition of this bestseller showed how to easily perform complex linear mixed model (LMM) analyses via a variety of software programs. Linear Mixed Models: A Practical Guide Using Statistical Software, Second Edition continues to lead readers step by step through the process of fitting LMMs. This second edition covers additional topics on the application of LMMs that are valuable for data analysts in all fields. It also updates the case studies using the latest versions of the software procedures and provides up-to-date information on the options and features of the software procedures available for fitting LMMs in SAS, SPSS, Stata, R/S-plus, and HLM. New to the Second Edition A new chapter on models with crossed random effects that uses a case study to illustrate software procedures capable of fitting these models Power analysis methods for longitudinal and clustered study designs, including software options for power analyses and suggested approaches to writing simulations Use of the lmer() function in the lme4 R package New sections on fitting LMMs to complex sample survey data and Bayesian approaches to making inferences based on LMMs Updated graphical procedures in the software packages Substantially revised index to enable more efficient reading and easier location of material on selected topics or software options More practical recommendations on using the software for analysis A new R package (WWGbook) that contains all of the data sets used in the examples Ideal for anyone who uses software for statistical modeling, this book eliminates the need to read multiple software-specific texts by covering the most popular software programs for fitting LMMs in one handy guide. The authors illustrate the models and methods through real-world examples that enable comparisons of model-fitting options and results across the software procedures.