Homological Algebra

Author: Marco Grandis
Publisher: World Scientific
ISBN: 9814425931
Format: PDF, ePub, Mobi
Download Now
We propose here a study of ‘semiexact’ and ‘homological' categories as a basis for a generalised homological algebra. Our aim is to extend the homological notions to deeply non-abelian situations, where satellites and spectral sequences can still be studied. This is a sequel of a book on ‘Homological Algebra, The interplay of homology with distributive lattices and orthodox semigroups’, published by the same Editor, but can be read independently of the latter. The previous book develops homological algebra in p-exact categories, i.e. exact categories in the sense of Puppe and Mitchell — a moderate generalisation of abelian categories that is nevertheless crucial for a theory of ‘coherence’ and ‘universal models’ of (even abelian) homological algebra. The main motivation of the present, much wider extension is that the exact sequences or spectral sequences produced by unstable homotopy theory cannot be dealt with in the previous framework. According to the present definitions, a semiexact category is a category equipped with an ideal of ‘null’ morphisms and provided with kernels and cokernels with respect to this ideal. A homological category satisfies some further conditions that allow the construction of subquotients and induced morphisms, in particular the homology of a chain complex or the spectral sequence of an exact couple. Extending abelian categories, and also the p-exact ones, these notions include the usual domains of homology and homotopy theories, e.g. the category of ‘pairs’ of topological spaces or groups; they also include their codomains, since the sequences of homotopy ‘objects’ for a pair of pointed spaces or a fibration can be viewed as exact sequences in a homological category, whose objects are actions of groups on pointed sets. Homological Algebra: The Interplay of Homology with Distributive Lattices and Orthodox Semigroups Contents:IntroductionSemiexact categoriesHomological CategoriesSubquotients, Homology and Exact CouplesSatellitesUniversal ConstructionsApplications to Algebraic TopologyHomological Theories and Biuniversal ModelsAppendix A. Some Points of Category Theory Readership: Graduate students, professors and researchers in pure mathematics, in particular category theory and algebraic topology. Keywords:Non Abelian Homological Algebra;Spectral Sequences;Distributive Lattices;Orthodox Semigroups;Categories of RelationsReviews: “The range of applications and examples is considerable and many are outside the reach of more standard forms of homological algebra, but the methods used here also give insight as to 'why' the classical theory works and how its results can be interpreted.” Zentralblatt MATH

Category Theory and Applications

Author: Marco Grandis
Publisher: World Scientific
ISBN: 9813231084
Format: PDF, ePub, Mobi
Download Now
Category Theory now permeates most of Mathematics, large parts of theoretical Computer Science and parts of theoretical Physics. Its unifying power brings together different branches, and leads to a deeper understanding of their roots. This book is addressed to students and researchers of these fields and can be used as a text for a first course in Category Theory. It covers its basic tools, like universal properties, limits, adjoint functors and monads. These are presented in a concrete way, starting from examples and exercises taken from elementary Algebra, Lattice Theory and Topology, then developing the theory together with new exercises and applications. Applications of Category Theory form a vast and differentiated domain. This book wants to present the basic applications and a choice of more advanced ones, based on the interests of the author. References are given for applications in many other fields. Contents: Introduction Categories, Functors and Natural Transformations Limits and Colimits Adjunctions and Monads Applications in Algebra Applications in Topology and Algebraic Topology Applications in Homological Algebra Hints at Higher Dimensional Category Theory References Indices Readership: Graduate students and researchers of mathematics, computer science, physics. Keywords: Category TheoryReview: Key Features: The main notions of Category Theory are presented in a concrete way, starting from examples taken from the elementary part of well-known disciplines: Algebra, Lattice Theory and Topology The theory is developed presenting other examples and some 300 exercises; the latter are endowed with a solution, or a partial solution, or adequate hints Three chapters and some extra sections are devoted to applications

Homological Algebra

Author: Marco Grandis
Publisher: World Scientific
ISBN: 9814407062
Format: PDF, ePub
Download Now
In this book we want to explore aspects of coherence in homological algebra, that already appear in the classical situation of abelian groups or abelian categories. Lattices of subobjects are shown to play an important role in the study of homological systems, from simple chain complexes to all the structures that give rise to spectral sequences. A parallel role is played by semigroups of endorelations. These links rest on the fact that many such systems, but not all of them, live in distributive sublattices of the modular lattices of subobjects of the system. The property of distributivity allows one to work with induced morphisms in an automatically consistent way, as we prove in a 'Coherence Theorem for homological algebra'. (On the contrary, a 'non-distributive' homological structure like the bifiltered chain complex can easily lead to inconsistency, if one explores the interaction of its two spectral sequences farther than it is normally done.) The same property of distributivity also permits representations of homological structures by means of sets and lattices of subsets, yielding a precise foundation for the heuristic tool of Zeeman diagrams as universal models of spectral sequences. We thus establish an effective method of working with spectral sequences, called 'crossword chasing', that can often replace the usual complicated algebraic tools and be of much help to readers that want to apply spectral sequences in any field.

Mal cev Protomodular Homological and Semi Abelian Categories

Author: Francis Borceux
Publisher: Springer Science & Business Media
ISBN: 9781402019616
Format: PDF, ePub
Download Now
The purpose of the book is to take stock of the situation concerning Algebra via Category Theory in the last fifteen years, where the new and synthetic notions of Mal'cev, protomodular, homological and semi-abelian categories emerged. These notions force attention on the fibration of points and allow a unified treatment of the main algebraic: homological lemmas, Noether isomorphisms, commutator theory. The book gives full importance to examples and makes strong connections with Universal Algebra. One of its aims is to allow appreciating how productive the essential categorical constraint is: knowing an object, not from inside via its elements, but from outside via its relations with its environment. The book is intended to be a powerful tool in the hands of researchers in category theory, homology theory and universal algebra, as well as a textbook for graduate courses on these topics.

Theory of Operator Algebras III

Author: Masamichi Takesaki
Publisher: Springer Science & Business Media
ISBN: 3662104539
Format: PDF
Download Now
From the reviews: "These three bulky volumes [EMS 124, 125, 127] [...] provide an introduction to this rapidly developing theory. [...] These books can be warmly recommended to every graduate student who wants to become acquainted with this exciting branch of mathematics. Furthermore, they should be on the bookshelf of every researcher of the area." Acta Scientiarum Mathematicarum

Lectures on Algebraic Topology

Author: Albrecht Dold
Publisher: Springer Science & Business Media
ISBN: 9783540586609
Format: PDF, ePub, Mobi
Download Now
Springer is reissuing a selected few highly successful books in a new, inexpensive softcover edition to make them easily accessible to younger generations of students and researchers. Springer-Verlag began publishing books in higher mathematics in 1920. This is a reprint of the Second Edition.

Extended Abstracts Spring 2015

Author: Dolors Herbera
Publisher: Birkhäuser
ISBN: 3319454412
Format: PDF, Mobi
Download Now
This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest developments in the area. It appeals to established researchers as well as PhD and postdoctoral students who want to learn more about the latest advances in these highly active fields of research.

Homological and Computational Methods in Commutative Algebra

Author: Aldo Conca
Publisher: Springer
ISBN: 3319619438
Format: PDF, Docs
Download Now
This volume collects contributions by leading experts in the area of commutative algebra related to the INdAM meeting “Homological and Computational Methods in Commutative Algebra” held in Cortona (Italy) from May 30 to June 3, 2016 . The conference and this volume are dedicated to Winfried Bruns on the occasion of his 70th birthday. In particular, the topics of this book strongly reflect the variety of Winfried Bruns’ research interests and his great impact on commutative algebra as well as its applications to related fields. The authors discuss recent and relevant developments in algebraic geometry, commutative algebra, computational algebra, discrete geometry and homological algebra. The book offers a unique resource, both for young and more experienced researchers seeking comprehensive overviews and extensive bibliographic references.

Cyclic Homology

Author: Jean-Louis Loday
Publisher: Springer Science & Business Media
ISBN: 9783540630746
Format: PDF, Kindle
Download Now
From the reviews: "This is a very interesting book containing material for a comprehensive study of the cyclid homological theory of algebras, cyclic sets and S1-spaces. Lie algebras and algebraic K-theory and an introduction to Connes'work and recent results on the Novikov conjecture. The book requires a knowledge of homological algebra and Lie algebra theory as well as basic technics coming from algebraic topology. The bibliographic comments at the end of each chapter offer good suggestions for further reading and research. The book can be strongly recommended to anybody interested in noncommutative geometry, contemporary algebraic topology and related topics." European Mathematical Society Newsletter In this second edition the authors have added a chapter 13 on MacLane (co)homology.