How to Count

Author: Robert A. Beeler
Publisher: Springer
ISBN: 3319138448
Format: PDF, ePub
Download Now
Providing a self-contained resource for upper undergraduate courses in combinatorics, this text emphasizes computation, problem solving, and proof technique. In particular, the book places special emphasis the Principle of Inclusion and Exclusion and the Multiplication Principle. To this end, exercise sets are included at the end of every section, ranging from simple computations (evaluate a formula for a given set of values) to more advanced proofs. The exercises are designed to test students' understanding of new material, while reinforcing a working mastery of the key concepts previously developed in the book. Intuitive descriptions for many abstract techniques are included. Students often struggle with certain topics, such as generating functions, and this intuitive approach to the problem is helpful in their understanding. When possible, the book introduces concepts using combinatorial methods (as opposed to induction or algebra) to prove identities. Students are also asked to prove identities using combinatorial methods as part of their exercises. These methods have several advantages over induction or algebra.

How to Count

Author: R.B.J.T. Allenby
Publisher: CRC Press
ISBN: 1420082612
Format: PDF, ePub
Download Now
Emphasizes a Problem Solving Approach A first course in combinatorics Completely revised, How to Count: An Introduction to Combinatorics, Second Edition shows how to solve numerous classic and other interesting combinatorial problems. The authors take an easily accessible approach that introduces problems before leading into the theory involved. Although the authors present most of the topics through concrete problems, they also emphasize the importance of proofs in mathematics. New to the Second Edition This second edition incorporates 50 percent more material. It includes seven new chapters that cover occupancy problems, Stirling and Catalan numbers, graph theory, trees, Dirichlet’s pigeonhole principle, Ramsey theory, and rook polynomials. This edition also contains more than 450 exercises. Ideal for both classroom teaching and self-study, this text requires only a modest amount of mathematical background. In an engaging way, it covers many combinatorial tools, such as the inclusion-exclusion principle, generating functions, recurrence relations, and Pólya’s counting theorem.

Introduction to Combinatorics Second Edition

Author: Walter D. Wallis
Publisher: CRC Press
ISBN: 1498777635
Format: PDF
Download Now
What Is Combinatorics Anyway? Broadly speaking, combinatorics is the branch of mathematics dealing with different ways of selecting objects from a set or arranging objects. It tries to answer two major kinds of questions, namely, counting questions: how many ways can a selection or arrangement be chosen with a particular set of properties; and structural questions: does there exist a selection or arrangement of objects with a particular set of properties? The authors have presented a text for students at all levels of preparation. For some, this will be the first course where the students see several real proofs. Others will have a good background in linear algebra, will have completed the calculus stream, and will have started abstract algebra. The text starts by briefly discussing several examples of typical combinatorial problems to give the reader a better idea of what the subject covers. The next chapters explore enumerative ideas and also probability. It then moves on to enumerative functions and the relations between them, and generating functions and recurrences., Important families of functions, or numbers and then theorems are presented. Brief introductions to computer algebra and group theory come next. Structures of particular interest in combinatorics: posets, graphs, codes, Latin squares, and experimental designs follow. The authors conclude with further discussion of the interaction between linear algebra and combinatorics. Features Two new chapters on probability and posets. Numerous new illustrations, exercises, and problems. More examples on current technology use A thorough focus on accuracy Three appendices: sets, induction and proof techniques, vectors and matrices, and biographies with historical notes, Flexible use of MapleTM and MathematicaTM

Introduction to Combinatorics

Author: A. B. Slomson
Publisher: CRC Press
ISBN: 9780412353703
Format: PDF, Docs
Download Now
The growth in digital devices, which require discrete formulation of problems, has revitalized the role of combinatorics, making it indispensable to computer science. Furthermore, the challenges of new technologies have led to its use in industrial processes, communications systems, electrical networks, organic chemical identification, coding theory, economics, and more. With a unique approach, Introduction to Combinatorics builds a foundation for problem-solving in any of these fields. Although combinatorics deals with finite collections of discrete objects, and as such differs from continuous mathematics, the two areas do interact. The author, therefore, does not hesitate to use methods drawn from continuous mathematics, and in fact shows readers the relevance of abstract, pure mathematics to real-world problems. The author has structured his chapters around concrete problems, and as he illustrates the solutions, the underlying theory emerges. His focus is on counting problems, beginning with the very straightforward and ending with the complicated problem of counting the number of different graphs with a given number of vertices. Its clear, accessible style and detailed solutions to many of the exercises, from routine to challenging, provided at the end of the book make Introduction to Combinatorics ideal for self-study as well as for structured coursework.

Introductory Combinatorics

Author: Richard A. Brualdi
Publisher: Math Classics
ISBN: 9780134689616
Format: PDF, ePub, Mobi
Download Now
Originally published in 2010, reissued as part of Pearson's modern classic series.

Combinatorics

Author: Robin Wilson
Publisher: Oxford University Press
ISBN: 0198723490
Format: PDF, ePub
Download Now
How many possible sudoku puzzles are there? In the lottery, what is the chance that two winning balls have consecutive numbers? Who invented Pascal's triangle? (it was not Pascal) Combinatorics, the branch of mathematics concerned with selecting, arranging, and listing or counting collections of objects, works to answer all these questions. Dating back some 3000 years, and initially consisting mainly of the study of permutations and combinations, its scope has broadened to include topics such as graph theory, partitions of numbers, block designs, design of codes, and latin squares. In this Very Short Introduction Robin Wilson gives an overview of the field and its applications in mathematics and computer theory, considering problems from the shortest routes covering certain stops to the minimum number of colours needed to colour a map with different colours for neighbouring countries. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.

Combinatorial Methods with Computer Applications

Author: Jonathan L. Gross
Publisher: CRC Press
ISBN: 1584887443
Format: PDF, Docs
Download Now
Combinatorial Methods with Computer Applications provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. Requiring only a foundation in discrete mathematics, it can serve as the textbook in a combinatorial methods course or in a combined graph theory and combinatorics course. After an introduction to combinatorics, the book explores six systematic approaches within a comprehensive framework: sequences, solving recurrences, evaluating summation expressions, binomial coefficients, partitions and permutations, and integer methods. The author then focuses on graph theory, covering topics such as trees, isomorphism, automorphism, planarity, coloring, and network flows. The final chapters discuss automorphism groups in algebraic counting methods and describe combinatorial designs, including Latin squares, block designs, projective planes, and affine planes. In addition, the appendix supplies background material on relations, functions, algebraic systems, finite fields, and vector spaces. Paving the way for students to understand and perform combinatorial calculations, this accessible text presents the discrete methods necessary for applications to algorithmic analysis, performance evaluation, and statistics as well as for the solution of combinatorial problems in engineering and the social sciences.

A Combinatorial Approach to Matrix Theory and Its Applications

Author: Richard A. Brualdi
Publisher: CRC Press
ISBN: 9781420082241
Format: PDF, Mobi
Download Now
Unlike most elementary books on matrices, A Combinatorial Approach to Matrix Theory and Its Applications employs combinatorial and graph-theoretical tools to develop basic theorems of matrix theory, shedding new light on the subject by exploring the connections of these tools to matrices. After reviewing the basics of graph theory, elementary counting formulas, fields, and vector spaces, the book explains the algebra of matrices and uses the König digraph to carry out simple matrix operations. It then discusses matrix powers, provides a graph-theoretical definition of the determinant using the Coates digraph of a matrix, and presents a graph-theoretical interpretation of matrix inverses. The authors develop the elementary theory of solutions of systems of linear equations and show how to use the Coates digraph to solve a linear system. They also explore the eigenvalues, eigenvectors, and characteristic polynomial of a matrix; examine the important properties of nonnegative matrices that are part of the Perron–Frobenius theory; and study eigenvalue inclusion regions and sign-nonsingular matrices. The final chapter presents applications to electrical engineering, physics, and chemistry. Using combinatorial and graph-theoretical tools, this book enables a solid understanding of the fundamentals of matrix theory and its application to scientific areas.

Proofs that Really Count

Author: Arthur T. Benjamin
Publisher: MAA
ISBN: 9780883853337
Format: PDF, ePub
Download Now
Demonstration of the use of simple counting arguments to describe number patterns; numerous hints and references.

Enumerative Combinatorics

Author: Charalambos A. Charalambides
Publisher: CRC Press
ISBN: 9781584882909
Format: PDF, ePub, Mobi
Download Now
Enumerative Combinatorics presents elaborate and systematic coverage of the theory of enumeration. The first seven chapters provide the necessary background, including basic counting principles and techniques, elementary enumerative topics, and an extended presentation of generating functions and recurrence relations. The remaining seven chapters focus on more advanced topics, including, Stirling numbers, partitions of integers, partition polynomials, Eulerian numbers and Polya's counting theorem. Extensively classroom tested, this text was designed for introductory- and intermediate-level courses in enumerative combinatorics, but the far-reaching applications of the subject also make the book useful to those in operational research, the physical and social science, and anyone who uses combinatorial methods. Remarks, discussions, tables, and numerous examples support the text, and a wealth of exercises-with hints and answers provided in an appendix--further illustrate the subject's concepts, theorems, and applications.