Image Processing in Radiation Therapy

Author: Kristy K. Brock
Publisher: CRC Press
ISBN: 1439830185
Format: PDF, ePub
Download Now
Images from CT, MRI, PET, and other medical instrumentation have become central to the radiotherapy process in the past two decades, thus requiring medical physicists, clinicians, dosimetrists, radiation therapists, and trainees to integrate and segment these images efficiently and accurately in a clinical environment. Image Processing in Radiation Therapy presents an up-to-date, detailed treatment of techniques and algorithms for the registration, segmentation, reconstruction, and evaluation of imaging data. It describes how these tools are used in radiation planning, treatment delivery, and outcomes assessment. The book spans deformable registration, segmentation, and image reconstruction and shows how to incorporate these practices in radiation therapy. The first section explores image processing in adaptive radiotherapy, online monitoring and tracking, dose accumulation, and accuracy assessment. The second section describes the mathematical approach to deformable registration. The book presents similarity metrics used for registration techniques, discussing their effectiveness and applicability in radiation therapy. It also evaluates parametric and nonparametric image registration techniques and their applications in radiation therapy processes. The third section assesses the efficiency, robustness, and breadth of application of image segmentation approaches, including atlas-based, level set, and registration-based techniques. The fourth section focuses on advanced imaging techniques for radiotherapy, such as 3D image reconstruction and image registration using a graphics processor unit. With contributions from an international group of renowned authors, this book provides a comprehensive description of image segmentation and registration, in-room imaging, and advanced reconstruction techniques. Through many practical examples, it illustrates the clinical rationale and implementation of the techniques.

Fundamentals of Digital Imaging in Medicine

Author: Roger Bourne
Publisher: Springer Science & Business Media
ISBN: 9781848820876
Format: PDF, Mobi
Download Now
In general, image processing texts are intended for students of engineering and computer science, and there is little written at all on the specific requirements of medical image processing. Students of medical radiation science (Diagnostic radiography, Nuclear medicine, Radiation therapy) usually have minimal mathematical and computer science training and find the available texts incomprehensible. A text that explains the principles of image processing in minimally-mathematical language is needed for these students. Contrary to the claims of some textbook authors, the vast majority of technologists that process images do not need to understand the mathematics involved, but would nevertheless benefit from a thorough understanding of the general process.

Principles and Practice of Radiation Therapy

Author: Charles M. Washington
Publisher: Elsevier Health Sciences
ISBN: 0323287522
Format: PDF, Docs
Download Now
Learn everything you need to know about radiation therapy with the only comprehensive text written for radiation therapy students by radiation therapists. This book is designed to help you understand cancer management, improve clinical techniques for delivering doses of radiation, and apply complex concepts to treatment planning and delivery. This edition features enhanced learning tools and thoroughly updated content, including three new chapters to inform you of increasingly important technologies and practices. The up-to-date and authoritative coverage of this text make it a resource you'll want to consult throughout your radiation therapy courses and beyond. Complete coverage of radiation therapy provides all introductory content plus the full scope of information on physics, simulation, and treatment planning. Contributions from a broad range of practitioners bring you the expertise of radiation therapists, physicians, nurses, administrators, and educators who are part of cancer management teams. Chapters on image guided radiation therapy, intensity modulated radiation therapy, and CT simulation keep you up-to-date with emerging technologies. Color inserts show significant procedures and imaging technologies clearly.

Handbook of Medical Imaging Medical image processing and analysis

Author: Jacob Beutel
Publisher: SPIE Press
ISBN: 9780819436221
Format: PDF, Kindle
Download Now
Volume 2 addresses the methods in use or in development for enhancing the visual perception of digital medical images obtained by a wide variety of imaging modalities and for image analysis as an aid to detection and diagnosis.

3D Imaging in Medicine Second Edition

Author: Jayaram K. Udupa
Publisher: CRC Press
ISBN: 9780849331794
Format: PDF, ePub
Download Now
The ability to visualize, non-invasively, human internal organs in their true from and shape has intrigued mankind for centuries. While the recent inventions of medical imaging modalities such as computerized tomography and magnetic resonance imaging have revolutionized radiology, the development of three-dimensional (3D) imaging has brought us closer to the age-old quest of non-invasive visualization. The ability to not only visualize but to manipulate and analyze 3D structures from captured multidimensional image data, is vital to a number of diagnostic and therapeutic applications. 3D Imaging in Medicine, Second Edition, unique in its contents, covers both the technical aspects and the actual medical applications of the process in a single source. The value of this technology is obvious. For example, three dimensional imaging allows a radiologist to accurately target the positioning and dosage of chemotherapy as well as to make more accurate diagnoses by showing more pathology; it allows the vascular surgeon to study the flow of blood through clogged arteries; it allows the orthopedist to find all the pieces of a compound fracture; and, it allows oncologists to perform less invasive biopsies. In fact, one of the most important uses of 3D Imaging is in computer-assisted surgery. For example, in cancer surgery, computer images show the surgeon the extent of the tumor so that only the diseased tissue is removed. In short, 3D imaging provides clinicians with information that saves time and money. 3D Imaging in Medicine, Second Edition provides a ready reference on the fundamental science of 3D imaging and its medical applications. The chapters have been written by experts in the field, and the technical aspects are covered in a tutorial fashion, describing the basic principles and algorithms in an easily understandable way. The application areas covered include: surgical planning, neuro-surgery, orthopedics, prosthesis design, brain imaging, analysis of cardio-pulmonary structures, and the assessment of clinical efficacy. The book is designed to provide a quick and systematic understanding of the principles of biomedical visualization to students, scientists and researchers, and to act as a source of information to medical practitioners on a wide variety of clinical applications of 3D imaging.

Informatics in Radiation Oncology

Author: George Starkschall
Publisher: CRC Press
ISBN: 1439825831
Format: PDF, Kindle
Download Now
Reflecting the increased importance of the collaborations between radiation oncology and informatics professionals, Informatics in Radiation Oncology discusses the benefits of applying informatics principles to the processes within radiotherapy. It explores how treatment and imaging information is represented, stored, and retrieved as well as how this information relates to other patient data. The book deepens your knowledge of current and emerging information technology and informatics principles applied to radiation oncology so that all the data gathered—from laboratory results to medical images—can be fully exploited to make treatments more effective and processes more efficient. After introducing the basics of informatics and its connection to radiation oncology, the book examines the process of healthcare delivery in radiation oncology, the challenges of managing images in radiotherapy, and the burgeoning field of radiogenomics. It then presents teaching, clinical trials, and research tools and describes open access clinical imaging archives in radiotherapy, techniques for maximizing information from multimodality imaging, and the roles of images in treatment planning. It also looks at how informatics can improve treatment planning, the safety and efficiency of delivery systems, image-guided patient positioning, and patient assessment. The book concludes with discussions on how outcomes modeling evaluates the effectiveness of treatments, how quality control informatics improves the reliability of processes, and how to perform quality assurance on the informatics tools. With contributions from a host of top international experts in radiation oncology, medical physics, and informatics, this book leads the way in moving the field forward. It encourages you to find new ways of applying informatics to radiation oncology and help your patients in their fight against cancer.

Medical Imaging Concepts Methodologies Tools and Applications

Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1522505725
Format: PDF, Mobi
Download Now
Medical imaging has transformed the ways in which various conditions, injuries, and diseases are identified, monitored, and treated. As various types of digital visual representations continue to advance and improve, new opportunities for their use in medical practice will likewise evolve. Medical Imaging: Concepts, Methodologies, Tools, and Applications presents a compendium of research on digital imaging technologies in a variety of healthcare settings. This multi-volume work contains practical examples of implementation, emerging trends, case studies, and technological innovations essential for using imaging technologies for making medical decisions. This comprehensive publication is an essential resource for medical practitioners, digital imaging technologists, researchers, and medical students.

Adaptive Radiation Therapy

Author: X. Allen Li
Publisher: CRC Press
ISBN: 9781439816356
Format: PDF, ePub, Docs
Download Now
Modern medical imaging and radiation therapy technologies are so complex and computer driven that it is difficult for physicians and technologists to know exactly what is happening at the point-of-care. Medical physicists responsible for filling this gap in knowledge must stay abreast of the latest advances at the intersection of medical imaging and radiation therapy. This book provides medical physicists and radiation oncologists current and relevant information on Adaptive Radiation Therapy (ART), a state-of-the-art approach that uses a feedback process to account for patient-specific anatomic and/or biological changes, thus delivering highly individualized radiation therapy for cancer patients. The book should also benefit medical dosimetrists and radiation therapists. Adaptive Radiation Therapy describes technological and methodological advances in the field of ART, as well as initial clinical experiences using ART for selected anatomic sites. Divided into three sections (radiobiological basis, current technologies, and clinical applications), the book covers: Morphological and biological biomarkers for patient-specific planning Design and optimization of treatment plans Delivery of IMRT and IGRT intervention methodologies of ART Management of intrafraction variations, particularly with respiratory motion Quality assurance needed to ensure the safe delivery of ART ART applications in several common cancer types / anatomic sites The technology and methodology for ART have advanced significantly in the last few years and accumulated clinical data have demonstrated the need for ART in clinical settings, assisted by the wide application of intensity modulated radiation therapy (IMRT) and image-guided radiation therapy (IGRT). This book shows the real potential for supplying every patient with individualized radiation therapy that is maximally accurate and precise.

Informatics in Medical Imaging

Author: George C. Kagadis
Publisher: CRC Press
ISBN: 1439831246
Format: PDF, Docs
Download Now
Informatics in Medical Imaging provides a comprehensive survey of the field of medical imaging informatics. In addition to radiology, it also addresses other specialties such as pathology, cardiology, dermatology, and surgery, which have adopted the use of digital images. The book discusses basic imaging informatics protocols, picture archiving and communication systems, and the electronic medical record. It details key instrumentation and data mining technologies used in medical imaging informatics as well as practical operational issues, such as procurement, maintenance, teleradiology, and ethics. Highlights Introduces the basic ideas of imaging informatics, the terms used, and how data are represented and transmitted Emphasizes the fundamental communication paradigms: HL7, DICOM, and IHE Describes information systems that are typically used within imaging departments: orders and result systems, acquisition systems, reporting systems, archives, and information-display systems Outlines the principal components of modern computing, networks, and storage systems Covers the technology and principles of display and acquisition detectors, and rounds out with a discussion of other key computer technologies Discusses procurement and maintenance issues; ethics and its relationship to government initiatives like HIPAA; and constructs beyond radiology The technologies of medical imaging and radiation therapy are so complex and computer-driven that it is difficult for physicians and technologists responsible for their clinical use to know exactly what is happening at the point of care. Medical physicists are best equipped to understand the technologies and their applications, and these individuals are assuming greater responsibilities in the clinical arena to ensure that intended care is delivered in a safe and effective manner. Built on a foundation of classic and cutting-edge research, Informatics in Medical Imaging supports and updates medical physicists functioning at the intersection of radiology and radiation.

Machine Learning and Medical Imaging

Author: Guorong Wu
Publisher: Academic Press
ISBN: 0128041145
Format: PDF
Download Now
Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians. Demonstrates the application of cutting-edge machine learning techniques to medical imaging problems Covers an array of medical imaging applications including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics Features self-contained chapters with a thorough literature review Assesses the development of future machine learning techniques and the further application of existing techniques