Induction Motor Fault Diagnosis

Author: Subrata Karmakar
Publisher: Springer
ISBN: 9811006245
Format: PDF
Download Now
This book covers the diagnosis and assessment of the various faults which can occur in a three phase induction motor, namely rotor broken-bar faults, rotor-mass unbalance faults, stator winding faults, single phasing faults and crawling. Following a brief introduction, the second chapter describes the construction and operation of an induction motor, then reviews the range of known motor faults, some existing techniques for fault analysis, and some useful signal processing techniques. It includes an extensive literature survey to establish the research trends in induction motor fault analysis. Chapters three to seven describe the assessment of each of the five primary fault types. In the third chapter the rotor broken-bar fault is discussed and then two methods of diagnosis are described; (i) diagnosis of the fault through Radar analysis of stator current Concordia and (ii) diagnosis through envelope analysis of motor startup current using Hilbert and Wavelet Transforms. In chapter four, rotor-mass unbalance faults are assessed, and diagnosis of both transient and steady state stator current has been analyzed using different techniques. If both rotor broken-bar and rotor-mass unbalance faults occur simultaneously then for identification an algorithm is provided in this chapter. Chapter five considers stator winding faults and five different analysis techniques, chapter six covers diagnosis of single phasing faults, and chapter seven describes crawling and its diagnosis. Finally, chapter eight focuses on fault assessment, and presents a summary of the book together with a discussion of prospects for future research on fault diagnosis.

Electric Machines

Author: Hamid A. Toliyat
Publisher: CRC Press
ISBN: 1420006282
Format: PDF, ePub
Download Now
With countless electric motors being used in daily life, in everything from transportation and medical treatment to military operation and communication, unexpected failures can lead to the loss of valuable human life or a costly standstill in industry. To prevent this, it is important to precisely detect or continuously monitor the working condition of a motor. Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis reviews diagnosis technologies and provides an application guide for readers who want to research, develop, and implement a more effective fault diagnosis and condition monitoring scheme—thus improving safety and reliability in electric motor operation. It also supplies a solid foundation in the fundamentals of fault cause and effect. Combines Theoretical Analysis and Practical Application Written by experts in electrical engineering, the book approaches the fault diagnosis of electrical motors through the process of theoretical analysis and practical application. It begins by explaining how to analyze the fundamentals of machine failure using the winding functions method, the magnetic equivalent circuit method, and finite element analysis. It then examines how to implement fault diagnosis using techniques such as the motor current signature analysis (MCSA) method, frequency domain method, model-based techniques, and a pattern recognition scheme. Emphasizing the MCSA implementation method, the authors discuss robust signal processing techniques and the implementation of reference-frame-theory-based fault diagnosis for hybrid vehicles. Fault Modeling, Diagnosis, and Implementation in One Volume Based on years of research and development at the Electrical Machines & Power Electronics (EMPE) Laboratory at Texas A&M University, this book describes practical analysis and implementation strategies that readers can use in their work. It brings together, in one volume, the fundamentals of motor fault conditions, advanced fault modeling theory, fault diagnosis techniques, and low-cost DSP-based fault diagnosis implementation strategies.

Advanced Condition Monitoring and Fault Diagnosis of Electric Machines

Author: Irfan, Muhammad
Publisher: IGI Global
ISBN: 1522569901
Format: PDF, ePub, Mobi
Download Now
The reliability of induction motors is a major requirement in many industrial applications. It is especially important where an unexpected breakdown might result in the interruption of critical services such as military operations, transportation, aviation, and medical applications. Advanced Condition Monitoring and Fault Diagnosis of Electric Machines is a collection of innovative research on various issues related to machinery condition monitoring, signal processing and conditioning, instrumentation and measurements, and new trends in condition monitoring. It also pays special attention to the fault identification process. While highlighting topics including spectral analysis, electrical engineering, and bearing faults, this book is an ideal reference source for electrical engineers, mechanical engineers, researchers, and graduate-level students seeking current research on various methods of maintaining machinery.

Fault Diagnosis of Induction Motors

Author: Jawad Faiz
Publisher: IET
ISBN: 1785613286
Format: PDF, Docs
Download Now
This book is a comprehensive, structural approach to fault diagnosis strategy. The different fault types, signal processing techniques, and loss characterisation are addressed in the book. This is essential reading for work with induction motors for transportation and energy.

Condition Monitoring of Electrical Machines

Author: Peter J. Tavner
Publisher: John Wiley & Sons Incorporated
ISBN:
Format: PDF, ePub
Download Now
This is the only guide available on the techniques of monitoring the condition of electrical machinery on-line. Text explains the fundamentals of construction for rotating electrical machines, describes modes of failure for them, and gives comprehensive coverage of the methods that can be employed to detect incipient faults. Chapters cover current monitoring techniques--electrical, chemical, mechanical, and thermal--and also offer discussion of some of the new developments now being introduced. One section is devoted to case studies, including the monitoring of turbogenerators, large drives in the oil industry, and high integrity machines operating in a power station. Contains over 100 illustrations, 20 tables, and extensive references.

Current Signature Analysis for Condition Monitoring of Cage Induction Motors

Author: William T. Thomson
Publisher: John Wiley & Sons
ISBN: 1119029597
Format: PDF
Download Now
Provides coverage of Motor Current Signature Analysis (MCSA) for cage induction motors This book is primarily for industrial engineers. It has 13 chapters and contains a unique data base of 50 industrial case histories on the application of MCSA to diagnose broken rotor bars or unacceptable levels of airgap eccentricity in cage induction motors with ratings from 127 kW (170 H.P.) up to 10,160 kW (13,620 H.P.). There are also unsuccessful case histories, which is another unique feature of the book. The case studies also illustrate the effects of mechanical load dynamics downstream of the motor on the interpretation of current signatures. A number of cases are presented where abnormal operation of the driven load was diagnosed. Chapter 13 presents a critical appraisal of MCSA including successes, failures and lessons learned via industrial case histories. The case histories are presented in a step by step format, with predictions and outcomes supported by current spectra and photographic evidence to confirm a correct or incorrect diagnosis The case histories are presented in detail so readers fully understand the diagnosis The authors have 108 years of combined experience in the installation, maintenance, repair, design, manufacture, operation and condition monitoring of SCIMs There are 10 questions at the end of chapters 1 to 12 and answers can be obtained via the publisher Current Signature Analysis for Condition Monitoring of Cage Induction Motors serves as a reference for professional engineers, head electricians and technicians working with induction motors. To obtain the solutions manual for this book, please send an email to [email protected] William T. Thomson is Director and Consultant with EM Diagnostics Ltd, in Scotland. Prof. Thomson received a BSc (Hons) in Electrical Engineering in 1973 and an MSc in 1977 from the University of Strathclyde. He has published 72 papers on condition monitoring of induction motors in a variety of engineering journals such as IEEE Transactions (USA), IEE Proceedings (UK), and also at numerous International IEEE and IEE conferences. He is a senior member of the IEEE, a fellow of the IEE (IET) in the UK and a Chartered Professional Engineer registered in the UK. Ian Culbert was a Rotating Machines Specialist at Iris Power Qualitrol since April 2002 until his very untimely death on 8th September, 2015. At this company he provided consulting services to customers, assisted in product development, trained sales and field service staff and reviewed stator winding partial discharge reports. He has co-authored two books on electrical machine insulation design, evaluation, aging, testing and repair and was principal author of a number of Electric Power Research Institute reports on motor repair. Ian was a Registered Professional Engineer in the Province of Ontario, Canada and a Senior Member of IEEE.

Current Signature Analysis for Condition Monitoring of Cage Induction Motors

Author: William T. Thomson
Publisher: John Wiley & Sons
ISBN: 1119029597
Format: PDF, Docs
Download Now
Provides coverage of Motor Current Signature Analysis (MCSA) for cage induction motors This book is primarily for industrial engineers. It has 13 chapters and contains a unique data base of 50 industrial case histories on the application of MCSA to diagnose broken rotor bars or unacceptable levels of airgap eccentricity in cage induction motors with ratings from 127 kW (170 H.P.) up to 10,160 kW (13,620 H.P.). There are also unsuccessful case histories, which is another unique feature of the book. The case studies also illustrate the effects of mechanical load dynamics downstream of the motor on the interpretation of current signatures. A number of cases are presented where abnormal operation of the driven load was diagnosed. Chapter 13 presents a critical appraisal of MCSA including successes, failures and lessons learned via industrial case histories. The case histories are presented in a step by step format, with predictions and outcomes supported by current spectra and photographic evidence to confirm a correct or incorrect diagnosis The case histories are presented in detail so readers fully understand the diagnosis The authors have 108 years of combined experience in the installation, maintenance, repair, design, manufacture, operation and condition monitoring of SCIMs There are 10 questions at the end of chapters 1 to 12 and answers can be obtained via the publisher Current Signature Analysis for Condition Monitoring of Cage Induction Motors serves as a reference for professional engineers, head electricians and technicians working with induction motors. To obtain the solutions manual for this book, please send an email to [email protected] William T. Thomson is Director and Consultant with EM Diagnostics Ltd, in Scotland. Prof. Thomson received a BSc (Hons) in Electrical Engineering in 1973 and an MSc in 1977 from the University of Strathclyde. He has published 72 papers on condition monitoring of induction motors in a variety of engineering journals such as IEEE Transactions (USA), IEE Proceedings (UK), and also at numerous International IEEE and IEE conferences. He is a senior member of the IEEE, a fellow of the IEE (IET) in the UK and a Chartered Professional Engineer registered in the UK. Ian Culbert was a Rotating Machines Specialist at Iris Power Qualitrol since April 2002 until his very untimely death on 8th September, 2015. At this company he provided consulting services to customers, assisted in product development, trained sales and field service staff and reviewed stator winding partial discharge reports. He has co-authored two books on electrical machine insulation design, evaluation, aging, testing and repair and was principal author of a number of Electric Power Research Institute reports on motor repair. Ian was a Registered Professional Engineer in the Province of Ontario, Canada and a Senior Member of IEEE.

Fault Diagnosis Systems

Author: Rolf Isermann
Publisher: Springer Science & Business Media
ISBN: 9783540303688
Format: PDF, Kindle
Download Now
With increasing demands for efficiency and product quality plus progress in the integration of automatic control systems in high-cost mechatronic and safety-critical processes, the field of supervision (or monitoring), fault detection and fault diagnosis plays an important role. The book gives an introduction into advanced methods of fault detection and diagnosis (FDD). After definitions of important terms, it considers the reliability, availability, safety and systems integrity of technical processes. Then fault-detection methods for single signals without models such as limit and trend checking and with harmonic and stochastic models, such as Fourier analysis, correlation and wavelets are treated. This is followed by fault detection with process models using the relationships between signals such as parameter estimation, parity equations, observers and principal component analysis. The treated fault-diagnosis methods include classification methods from Bayes classification to neural networks with decision trees and inference methods from approximate reasoning with fuzzy logic to hybrid fuzzy-neuro systems. Several practical examples for fault detection and diagnosis of DC motor drives, a centrifugal pump, automotive suspension and tire demonstrate applications.

Electrical Machines Diagnosis

Author: Jean-Claude Trigeassou
Publisher: John Wiley & Sons
ISBN: 1118601750
Format: PDF, ePub, Mobi
Download Now
Monitoring and diagnosis of electrical machine faults is a scientific and economic issue which is motivated by objectives for reliability and serviceability in electrical drives. This book provides a survey of the techniques used to detect the faults occurring in electrical drives: electrical, thermal and mechanical faults of the electrical machine, faults of the static converter and faults of the energy storage unit. Diagnosis of faults occurring in electrical drives is an essential part of a global monitoring system used to improve reliability and serviceability. This diagnosis is performed with a large variety of techniques: parameter estimation, state observation, Kalman filtering, spectral analysis, neural networks, fuzzy logic, artificial intelligence, etc. Particular emphasis in this book is put on the modeling of the electrical machine in faulty situations. Electrical Machines Diagnosis presents original results obtained mainly by French researchers in different domains. It will be useful as a guideline for the conception of more robust electrical machines and indeed for engineers who have to monitor and maintain electrical drives. As the monitoring and diagnosis of electrical machines is still an open domain, this book will also be very useful to researchers.