Industrial Crystallization of Melts

Author: C.M. Van 't Land
Publisher: CRC Press
ISBN: 9780203021132
Format: PDF, ePub
Download Now
At the interface of chemical industry operations, equipment manufacturer input, and the scientific literature, Industrial Crystallization of Melts explores and explains melt crystallization and purification in the industrial arena. This comprehensive account details the orderly conversion of melts into solid, salable end materials and procedures for purification by remelting; summarizes key theoretical concepts relating to crystalline matter and instationary heat transfer; and surveys the equipment available for specific processes. It also offers over 100 tested equations, as well as clear-cut methods for handling organic melts that call for special crystallization provisions.

Handbook of Industrial Crystallization

Author: Allan Myerson
Publisher: Butterworth-Heinemann
ISBN: 9780080533513
Format: PDF
Download Now
Crystallization is an important separation and purification process used in industries ranging from bulk commodity chemicals to specialty chemicals and pharmaceuticals. In recent years, a number of environmental applications have also come to rely on crystallization in waste treatment and recycling processes. The authors provide an introduction to the field of newcomers and a reference to those involved in the various aspects of industrial crystallization. It is a complete volume covering all aspects of industrial crystallization, including material related to both fundamentals and applications. This new edition presents detailed material on crystallization of biomolecules, precipitation, impurity-crystal interactions, solubility, and design. Provides an ideal introduction for industrial crystallization newcomers Serves as a worthwhile reference to anyone involved in the field Covers all aspects of industrial crystallization in a single, complete volume

Melt Crystallization Technology

Author: Tine Arkenbout-de Vroome
Publisher: CRC Press
ISBN: 9781566761819
Format: PDF, Mobi
Download Now
From the Author's Preface There is a growing demand for ultrapure organic compounds such as fine chemicals, pharmaceuticals, and basic materials for use in the polymer industry. . . . In quite a number of cases, it is difficult or impossible to manufacture ultrapure organics efficiently using conventional separation techniques such as distillation. Moreover, conventional techniques usually require large amounts of energy. To improve the purification efficiency of organics, special techniques based on crystallization from the melt have been developed. Melt crystallization meets industry's need for a highly selective separation process for organic compounds which operates at low enough temperatures to prevent thermal degradation. Melt crystallization processes have the added advantage that they are energy-efficient and ecologically sound. Melt crystallization techniques appear to be particularly promising for upgrading organic materials and are one of the few routes that appear to be feasible for purifying starter materials for high-tech polymers. The aim of this book is to provide basic information on melt crystallization technology. . . . This monograph consists of three parts: 1. basic principles, 2. process options, and 3. technical equipment and applicability. This new book is the first unified guide and reference to an important chemical process technology. It is comprehensive and organized for easy reference. More than 150 diagrammatic representations, flow charts and photographs illustrate equipment and processes. More than 40 tables provide useful reference data. The Author Dr. Arkenbout studied chemistry at the University of Utrecht, and joined TNO, the Netherlands Organization for Applied Scientific Research. He has specialized in research on new separation processes and has had thirty of his articles on this subject published. He recently retired from the position of manager of physical separation research, but has remained active in this field through affiliations with the Laboratory of Solid State Chemistry at the University of Nijmegen, the Laboratory for Process Equipment, Delft University of Technology, and TNO.

Crystallization Technology Handbook

Author: A. Mersmann
Publisher: CRC Press
ISBN: 9780203908280
Format: PDF, ePub
Download Now
This handbook facilitates the selection, design and operation of large-scale industrial crystallizers that process crystals with the proper size distribution, shape and purity sought - including cooling, evaporation, drowning-out reaction, melt, and related crystallization techniques. This new edition offers new results on direct-contact cooling crystallization. It lists the properties of over 170 organic and inorganic crystallization systems.

Crystallization

Author: Wolfgang Beckmann
Publisher: John Wiley & Sons
ISBN: 3527650342
Format: PDF
Download Now
Crystallization is a natural occurring process but also a process abundantly used in the industry. Crystallization can occur from a solution, from the melt or via deposition of material from the gas phase (desublimation). Crystals distinguish themself from liquids, gases and amorphous substances by the long-range order of its building blocks that entail the crystals to be formed of well-defined faces, and give rise to a large number of properties of the solid. Crystallization is used at some stage in nearly all process industries as a method of production, purification or recovery of solid materials. Crystallization is practiced on all scales: from the isolation of the first milligrams of a newly synthesized substance in the research laboratory to isolating products on the mulit-million tonne scale in industry. The book describes the breadth of crystallization operations, from isolation from a reaction broth to purification and finally to tailoring product properties. In the first section of the book, the basic mechanisms - nucleation, growth, attrition and agglomeration are introduced. It ensures an understanding of supersaturation, the driving force of crystallization. Furthermore, the solubility of the substance and its dependences on process conditions and the various techniques of crystallization and their possibilities and limitations are discussed. Last but not least, the first part includes an intensive treatment of polymorphism . The second part builds on the basics, exploring how crystallization processes can be developed, either batch-wise or continuous, from solution or from the melt. A discussion of the purification during crystallization serves as a link between the two sections, where practical aspects and an insight using theoretical concepts are combined. Mixing and its influence on the crystallization as well as the mutual interference of down-stream processes with the crystallization are also treated. Finally, techniques to characterize the crop are discussed. The third part of the book is dedicated to accounts of actual developments and of carried-out crystallizations. Typical pitfalls and strategies to avoid these as well as the design of robust processes are presented.

Supercooling Crystallization and Melting within Emulsions and Divided Systems Mass Heat Transfers and Stability

Author: Danièle Clausse
Publisher: Bentham Science Publishers
ISBN: 168108130X
Format: PDF, Mobi
Download Now
Emulsions (simple, mixed or multiple) are essentially pure substances, aqueous or organic binary solutions. The have a wide range of uses, including industrial cooling and heat transfer processes. This monograph gives a brief overview of supercooling, crystallization and melting processes within emulsions. Differential scanning calorimetrey (DSC) coupled with RX is the main technique used to demonstrate these processes. Temperature readings in this work have been defined taking into account known nucleation laws. These results have been used to show mass transfers occurring within mixed emulsions (solid ripening) or multiple emulsions (composition ripening), gas hydrate formation due to a chemical reaction between water and a diffuse specific compound, these phenomena being described by diffusive models. Other aspects of heat transfer process covered in this book include the latent energy released at crystallizations or absorbed at the melting (which alters the temperature field through emulsions), the kinetics of phase transformations and self-regulation of temperature in nodules containing phase changing materials. This monograph is intended for advanced chemistry graduates as well as industrial and chemical engineers working with cooling and heat transfer systems.

BIWIC 2007 14th International Workshop on Industrial Crystallization

Author: A.E. Lewis
Publisher: IOS Press
ISBN: 160750278X
Format: PDF, Docs
Download Now
The field of crystallization holds many challenges, with the physical and chemical complexity of the crystallization process being core to the dynamic nature of the field. Exciting advances are currently being achieved in the areas of nanoparticle formation, product and particle design and methods of particle characterisation. There is also significant progress and innovation in the design, scale-up and control of crystallizers. These key developments are reflected in the session themes of the 14th BIWIC (Bremen International Workshop on Industrial Crystallization) with the technical programme incorporating a wide range of topics, such as; The formation and stabilisation of nano particles; Polymorphs and co-crystals in pharmaceutical preparation; Product and particle design; Kinetics of crystallization and measurement of crystal properties; Freeze, Antisolvent, Reactive and Melt crystallization; and Design, scale-up and control of crystallization processes at the industrial scale.

Progress in Understanding of Polymer Crystallization

Author: Günter Reiter
Publisher: Springer
ISBN: 3540473076
Format: PDF, Mobi
Download Now
In the context of polymer crystallization there are several still open and often controversially debated questions. The present volume addresses issues such as novel general views and concepts. It presents new ideas in a connected and accessible way. The intention is thus not only to provide a summary of the present state-of-the-art to all active works but to provide an entry point to newcomer and graduate students entering the field.