Information Theory and Network Coding

Author: Raymond W. Yeung
Publisher: Springer Science & Business Media
ISBN: 0387792333
Format: PDF, Mobi
Download Now
This book is an evolution from my book A First Course in Information Theory published in 2002 when network coding was still at its infancy. The last few years have witnessed the rapid development of network coding into a research ?eld of its own in information science. With its root in infor- tion theory, network coding has not only brought about a paradigm shift in network communications at large, but also had signi?cant in?uence on such speci?c research ?elds as coding theory, networking, switching, wireless c- munications,distributeddatastorage,cryptography,andoptimizationtheory. While new applications of network coding keep emerging, the fundamental - sults that lay the foundation of the subject are more or less mature. One of the main goals of this book therefore is to present these results in a unifying and coherent manner. While the previous book focused only on information theory for discrete random variables, the current book contains two new chapters on information theory for continuous random variables, namely the chapter on di?erential entropy and the chapter on continuous-valued channels. With these topics included, the book becomes more comprehensive and is more suitable to be used as a textbook for a course in an electrical engineering department.

A First Course in Information Theory

Author: Raymond W. Yeung
Publisher: Springer Science & Business Media
ISBN: 1441986081
Format: PDF, ePub, Docs
Download Now
This book provides an up-to-date introduction to information theory. In addition to the classical topics discussed, it provides the first comprehensive treatment of the theory of I-Measure, network coding theory, Shannon and non-Shannon type information inequalities, and a relation between entropy and group theory. ITIP, a software package for proving information inequalities, is also included. With a large number of examples, illustrations, and original problems, this book is excellent as a textbook or reference book for a senior or graduate level course on the subject, as well as a reference for researchers in related fields.

Network Coding Theory

Author: Raymond W. Yeung
Publisher: Now Publishers Inc
ISBN: 1933019247
Format: PDF
Download Now
Provides a tutorial on the basics of network coding theory. Divided into two parts, this book presents a unified framework for understanding the basic notions and fundamental results in network coding. It is aimed at students, researchers and practitioners working in networking research.

Network Coding

Author: Muriel Médard
Publisher: Academic Press
ISBN: 0123809185
Format: PDF, ePub
Download Now
Network coding is a field of information and coding theory and is a method of attaining maximum information flow in a network. This book is an ideal introduction for the communications and network engineer, working in research and development, who needs an intuitive introduction to network coding and to the increased performance and reliability it offers in many applications. This book is an ideal introduction for the research and development communications and network engineer who needs an intuitive introduction to the theory and wishes to understand the increased performance and reliability it offers over a number of applications. A clear and intuitive introduction to network coding, avoiding difficult mathematics, which does not require a background in information theory. Emphasis on how network coding techniques can be implemented, using a wide range of applications in communications and network engineering Detailed coverage on content distribution networks, peer-to-peer networks, overlay networks, streaming and multimedia applications, storage networks, network security and military networks, reliable communication, wireless networks, delay-tolerant and disruption-tolerant networks, cellular and ad hoc networks (including LTE and WiMAX), and connections with data compression and compressed sensing Edited and contributed by the world's leading experts

Network Coding

Author: Tracey Ho
Publisher: Cambridge University Press
ISBN: 1139470183
Format: PDF, Mobi
Download Now
Network coding promises to significantly impact the way communications networks are designed, operated, and understood. This book presents a unified and intuitive overview of the theory, applications, challenges, and future directions of this emerging field, and is a must-have resource for those working in wireline or wireless networking. • Uses an engineering approach - explains the ideas and practical techniques • Covers mathematical underpinnings, practical algorithms, code selection, security, and network management • Discusses key topics of inter-session (non-multicast) network coding, lossy networks, lossless networks, and subgraph-selection algorithms Starting with basic concepts, models, and theory, then covering a core subset of results with full proofs, Ho and Lun provide an authoritative introduction to network coding that supplies both the background to support research and the practical considerations for designing coded networks. This is an essential resource for graduate students and researchers in electronic and computer engineering and for practitioners in the communications industry.

Network Coding Fundamentals

Author: Christina Fragouli
Publisher: Now Publishers Inc
ISBN: 1601980329
Format: PDF, ePub
Download Now
Network coding is an elegant and novel technique introduced at the turn of the millennium to improve network throughput and performance. It is expected to be a critical technology for networks of the future. This tutorial addresses the first most natural questions one would ask about this new technique: how network coding works and what are its benefits, how network codes are designed and how much it costs to deploy networks implementing such codes, and finally, whether there are methods to deal with cycles and delay that are present in all real networks. A companion issue deals primarily with applications of network coding.

BATS Codes

Author: Shenghao Yang
Publisher: Morgan & Claypool Publishers
ISBN: 1627057153
Format: PDF, Kindle
Download Now
This book discusses an efficient random linear network coding scheme, called BATched Sparse code, or BATS code, which is proposed for communication through multi-hop networks with packet loss. Multi-hop wireless networks have applications in the Internet of Things (IoT), space, and under-water network communications, where the packet loss rate per network link is high, and feedbacks have long delays and are unreliable. Traditional schemes like retransmission and fountain codes are not sufficient to resolve the packet loss so that the existing communication solutions for multi-hop wireless networks have either long delay or low throughput when the network length is longer than a few hops. These issues can be resolved by employing network coding in the network, but the high computational and storage costs of such schemes prohibit their implementation in many devices, in particular, IoT devices that typically have low computational power and very limited storage. A BATS code consists of an outer code and an inner code. As a matrix generalization of a fountain code, the outer code generates a potentially unlimited number of batches, each of which consists of a certain number (called the batch size) of coded packets. The inner code comprises (random) linear network coding at the intermediate network nodes, which is applied on packets belonging to the same batch. When the batch size is 1, the outer code reduces to an LT code (or Raptor code if precode is applied), and network coding of the batches reduces to packet forwarding. BATS codes preserve the salient features of fountain codes, in particular, their rateless property and low encoding/decoding complexity. BATS codes also achieve the throughput gain of random linear network coding. This book focuses on the fundamental features and performance analysis of BATS codes, and includes some guidelines and examples on how to design a network protocol using BATS codes.

Network Information Theory

Author: Abbas El Gamal
Publisher: Cambridge University Press
ISBN: 1139503146
Format: PDF, Kindle
Download Now
This comprehensive treatment of network information theory and its applications provides the first unified coverage of both classical and recent results. With an approach that balances the introduction of new models and new coding techniques, readers are guided through Shannon's point-to-point information theory, single-hop networks, multihop networks, and extensions to distributed computing, secrecy, wireless communication, and networking. Elementary mathematical tools and techniques are used throughout, requiring only basic knowledge of probability, whilst unified proofs of coding theorems are based on a few simple lemmas, making the text accessible to newcomers. Key topics covered include successive cancellation and superposition coding, MIMO wireless communication, network coding, and cooperative relaying. Also covered are feedback and interactive communication, capacity approximations and scaling laws, and asynchronous and random access channels. This book is ideal for use in the classroom, for self-study, and as a reference for researchers and engineers in industry and academia.

Abstract Methods in Information Theory

Author: Y–ichir“ Kakihara
Publisher: World Scientific
ISBN: 9789810237110
Format: PDF, Kindle
Download Now
Information Theory is studied from the following view points: (1) the theory of entropy as amount of information; (2) the mathematical structure of information sources (probability measures); and (3) the theory of information channels. Shannon entropy and Kolmogorov-Sinai entropy are defined and their basic properties are examined, where the latter entropy is extended to be a linear functional on a certain set of measures. Ergodic and mixing properties of stationary sources are studied as well as AMS (asymptotically mean stationary) sources. The main purpose of this book is to present information channels in the environment of real and functional analysis as well as probability theory. Ergodic channels are characterized in various manners. Mixing and AMS channels are also considered in detail with some illustrations. A few other aspects of information channels including measurability, approximation and noncommutative extensions, are also discussed.