Innovation in Aeronautics

Author: T Young
Publisher: Elsevier
ISBN: 0857096095
Format: PDF, ePub
Download Now
Innovation in aerospace design and engineering is essential to meet the many challenges facing this sector. Innovation in aeronautics explores both a range of innovative ideas and how the process of innovation itself can be effectively managed. After an introduction to innovation in aeronautics, part one reviews developments including biologically-inspired technologies, morphing aerodynamic concepts, jet engine design drivers, and developments underpinned by digital technologies. The environment and human factors in innovation are also explored as are trends in supersonic passenger air travel. Part two goes on to examine change and the processes and management involved in innovative technology development. Challenges faced in aeronautical production are the focus of part three, which reviews topics such as intellectual property and patents, risk mitigation and the use of lean engineering. Finally, part four examines key issues in what makes for successful innovation in this sector. With its distinguished editors and international team of expert contributors, Innovation in aeronautics is an essential guide for all those involved in the design and engineering of aerospace structures and systems. Explores a range of innovative aerospace design ideas Discusses how the process of innovation itself can be effectively managed Reviews developments including biologically-inspired technologies, morphing aerodynamic concepts, jet engine design drivers and developments underpinned by digital technologies

Advanced Composite Materials for Aerospace Engineering

Author: Sohel Rana
Publisher: Woodhead Publishing
ISBN: 0081000545
Format: PDF, Kindle
Download Now
Advanced Composite Materials for Aerospace Engineering: Processing, Properties and Applications predominately focuses on the use of advanced composite materials in aerospace engineering. It discusses both the basic and advanced requirements of these materials for various applications in the aerospace sector, and includes discussions on all the main types of commercial composites that are reviewed and compared to those of metals. Various aspects, including the type of fibre, matrix, structure, properties, modeling, and testing are considered, as well as mechanical and structural behavior, along with recent developments. There are several new types of composite materials that have huge potential for various applications in the aerospace sector, including nanocomposites, multiscale and auxetic composites, and self-sensing and self-healing composites, each of which is discussed in detail. The book’s main strength is its coverage of all aspects of the topics, including materials, design, processing, properties, modeling and applications for both existing commercial composites and those currently under research or development. Valuable case studies provide relevant examples of various product designs to enhance learning. Contains contributions from leading experts in the field Provides a comprehensive resource on the use of advanced composite materials in the aerospace industry Discusses both existing commercial composite materials and those currently under research or development

Introduction to Aerospace Materials

Author: Adrian P Mouritz
Publisher: Elsevier
ISBN: 0857095153
Format: PDF, Kindle
Download Now
The structural materials used in airframe and propulsion systems influence the cost, performance and safety of aircraft, and an understanding of the wide range of materials used and the issues surrounding them is essential for the student of aerospace engineering.Introduction to aerospace materials reviews the main structural and engine materials used in aircraft, helicopters and spacecraft in terms of their production, properties, performance and applications. The first three chapters of the book introduce the reader to the range of aerospace materials, focusing on recent developments and requirements. Following these introductory chapters, the book moves on to discuss the properties and production of metals for aerospace structures, including chapters covering strengthening of metal alloys, mechanical testing, and casting, processing and machining of aerospace metals. The next ten chapters look in depth at individual metals including aluminium, titanium, magnesium, steel and superalloys, as well as the properties and processing of polymers, composites and wood. Chapters on performance issues such as fracture, fatigue and corrosion precede a chapter focusing on inspection and structural health monitoring of aerospace materials. Disposal/recycling and materials selection are covered in the final two chapters. With its comprehensive coverage of the main issues surrounding structural aerospace materials,Introduction to aerospace materials is essential reading for undergraduate students studying aerospace and aeronautical engineering. It will also be a valuable resource for postgraduate students and practising aerospace engineers. Reviews the main structural and engine materials used in aircraft, helicopters and space craft in terms of their properties, performance and applications Introduces the reader to the range of aerospace materials, focusing on recent developments and requirements, and discusses the properties and production of metals for aerospace structures Chapters look in depth at individual metals including aluminium, titanium, magnesium, steel and superalloys

Structural Integrity and Durability of Advanced Composites

Author: Peter Beaumont
Publisher: Woodhead Publishing
ISBN: 008100138X
Format: PDF, ePub, Mobi
Download Now
Structural Integrity and Durability of Advanced Composites: Innovative Modelling Methods and Intelligent Design presents scientific and technological research from leading composite materials scientists and engineers that showcase the fundamental issues and practical problems that affect the development and exploitation of large composite structures. As predicting precisely where cracks may develop in materials under stress is an age old mystery in the design and building of large-scale engineering structures, the burden of testing to provide "fracture safe design" is imperative. Readers will learn to transfer key ideas from research and development to both the design engineer and end-user of composite materials. This comprehensive text provides the information users need to understand deformation and fracture phenomena resulting from impact, fatigue, creep, and stress corrosion cracking and how these phenomena can affect reliability, life expectancy, and the durability of structures. Presents scientific and technological research from leading composite materials scientists and engineers that showcase fundamental issues and practical problems Provides the information users need to understand deformation and fracture phenomena resulting from impact, fatigue, creep, and stress corrosion cracking Enables readers to transfer key ideas from research and development to both the design engineer and end-user of composite materials

Handbook of Technical Textiles

Author: A. Richard Horrocks
Publisher: Woodhead Publishing
ISBN: 1782424881
Format: PDF, Mobi
Download Now
The first edition of Handbook of Technical Textiles has been an essential purchase for professionals and researchers in this area since its publication in 2000. With revised and updated coverage, including several new chapters, this revised two volume second edition reviews recent developments and new technologies across the field of technical textiles. Volume 2 – Technical Textile Applications offers an indispensable guide to established and developing areas in the use of technical textiles. The areas covered include textiles for personal protection and welfare, such as those designed for ballistic protection, personal thermal and fire protection, and medical applications; textiles for industrial, transport and engineering applications, including composite reinforcement and filtration; and the growing area of smart textiles. Comprehensive handbook for all aspects of technical textiles Provides updated, detailed coverage of processes, fabric structure, and applications Ideal resource for those interested in high-performance textiles, textile processes, textile processing, and textile applications Many of the original, recognized experts from the first edition update their respective chapters

Sustainable Composites for Aerospace Applications

Author: Mohammad Jawaid
Publisher: Woodhead Publishing
ISBN: 0081021380
Format: PDF, ePub
Download Now
Sustainable Composites for Aerospace Applications presents innovative advances in the fabrication, characterization and applications of LDH polymer nanocomposites. It covers fundamental structural and chemical knowledge and explores various properties and characterization techniques, including microscopic, spectroscopic and mechanical behaviors. Users will find a strong focus on the potential applications of LDH polymer nanocomposites, such as in energy, electronics, electromagnetic shielding, biomedical, agricultural, food packaging and water purification functions. This book provides comprehensive coverage of cutting-edge research in the field of LDH polymer nanocomposites and future applications, and is an essential read for all academics, researchers, engineers and students working in this area. Presents fundamental knowledge of LDH polymer nanocomposites, including chemical composition, structural features and fabrication techniques Provides an analytical overview of the different types of characterization techniques and technologies Contains extensive reviews on cutting-edge research for future applications in a variety of industries

Structural Health Monitoring SHM in Aerospace Structures

Author: Fuh-Gwo Yuan
Publisher: Woodhead Publishing
ISBN: 0081001584
Format: PDF, Mobi
Download Now
Structural Health Monitoring (SHM) in Aerospace Structures provides readers with the spectacular progress that has taken place over the last twenty years with respect to the area of Structural Health Monitoring (SHM). The widespread adoption of SHM could both significantly improve safety and reduce maintenance and repair expenses that are estimated to be about a quarter of an aircraft fleet’s operating costs. The SHM field encompasses transdisciplinary areas, including smart materials, sensors and actuators, damage diagnosis and prognosis, signal and image processing algorithms, wireless intelligent sensing, data fusion, and energy harvesting. This book focuses on how SHM techniques are applied to aircraft structures with particular emphasis on composite materials, and is divided into four main parts. Part One provides an overview of SHM technologies for damage detection, diagnosis, and prognosis in aerospace structures. Part Two moves on to analyze smart materials for SHM in aerospace structures, such as piezoelectric materials, optical fibers, and flexoelectricity. In addition, this also includes two vibration-based energy harvesting techniques for powering wireless sensors based on piezoelectric electromechanical coupling and diamagnetic levitation. Part Three explores innovative SHM technologies for damage diagnosis in aerospace structures. Chapters within this section include sparse array imaging techniques and phase array techniques for damage detection. The final section of the volume details innovative SHM technologies for damage prognosis in aerospace structures. This book serves as a key reference for researchers working within this industry, academic, and government research agencies developing new systems for the SHM of aerospace structures and materials scientists. Provides key information on the potential of SHM in reducing maintenance and repair costs Analyzes current SHM technologies and sensing systems, highlighting the innovation in each area Encompasses chapters on smart materials such as electroactive polymers and optical fibers

Finite Element Modelling of Composite Materials and Structures

Author: F L Matthews
Publisher: McGraw Hill Professional
ISBN: 9781855734227
Format: PDF, Mobi
Download Now
Performance prediction is an important factor in ensuring the correct design specification for composite materials. This book offers an introduction to a technique which is becoming increasingly used as an analytical tool for composite materials.

Superplastic Forming of Advanced Metallic Materials

Author: G Giuliano
Publisher: Elsevier
ISBN: 0857092774
Format: PDF, Mobi
Download Now
Ultra fine-grained metals can show exceptional ductility, known as superplasticity, during sheet forming. The higher ductility of superplastic metals makes it possible to form large and complex components in a single operation without joints or rivets. The result is less waste, lower weight and manufacturing costs, high precision and lack of residual stress associated with welding which makes components ideal for aerospace, automotive and other applications. Superplastic forming of advanced metallic materials summarises key recent research on this important process. Part one reviews types of superplastic metals, standards for superplastic forming, processes and equipment. Part two discusses ways of modelling superplastic forming processes whilst the final part of the book considers applications, including superplastic forming of titanium, aluminium and magnesium alloys. With its distinguished editor and international team of contributors, Superplastic forming of advanced metallic materials is a valuable reference for metallurgists and engineers in such sectors as aerospace and automotive engineering. Note: The Publishers wish to point out an error in the authorship of Chapter 3 which was originally listed as: G. Bernhart, Clément Ader Institute, France. The correct authorship is: G Bernhart, P. Lours, T. Cutard, V. Velay, Ecole des Mines Albi, France and F. Nazaret, Aurock, France. The Publishers apologise to the authors for this error. Reviews types of superplastic metals and standards for superplastic forming Discusses the modelling of superplastic forming, including mathematical and finite element modelling Examines various applications, including superplastic forming of titanium, aluminiun and magnesium alloys