Instrumentation in Earthquake Seismology

Author: Jens Havskov
Publisher: Springer
ISBN: 3319213148
Format: PDF, Mobi
Download Now
This work provides an up-to-date overview of modern instruments used in earthquake seismology as well as a description of theoretical and practical aspects of seismic instrumentation. The main topics are: • Choosing and installing equipment for seismic stations • Designing and setting up seismic networks and arrays • Maintaining and calibrating seismic instruments It also provides detailed descriptions of the following: • Seismic sensors • Digitizers • Seismic recorders • Communication systems • Software used for seismic station and networks In this second edition, new seismic equipment is presented and more comprehensive sections on topics like MEMS accelerometers, sigma-delta AD converters, dynamic range discussion and virtual networks have been included. This book is primarily intended for seismologists, engineers and technicians working with seismological instruments. It combines practical “know-how” with sufficient theory to explain the basic principles, making it also suitable for teaching students the most important aspects of seismic instrumentation. The book also gives a current overview of the majority of instruments and instrument manufacturers on the market, making it easy to compare the capability of instruments from different sources. SEISAN software was used for several examples in the book. This widely extended seismic analysis software is freely available from the University of Bergen website. The content of this book draws on the authors’ (a seismologist and a physicist) combined experience of working in this field for more than 35 years.

Routine Data Processing in Earthquake Seismology

Author: Jens Havskov
Publisher: Springer Science & Business Media
ISBN: 9048186978
Format: PDF, ePub, Mobi
Download Now
The purpose of this book is to get a practical understanding of the most common processing techniques in earthquake seismology. The book deals with manual methods and computer assisted methods. Each topic will be introduced with the basic theory followed by practical examples and exercises. There are manual exercises entirely based on the printed material of the book, as well as computer exercises based on public domain software. Most exercises are computer based. The software used, as well as all test data are available from http://extras.springer.com. This book is intended for everyone processing earthquake data, both in the observatory routine and in connection with research. Using the exercises, the book can also be used as a basis for university courses in earthquake processing. Since the main emphasis is on processing, the theory will only be dealt with to the extent needed to understand the processing steps, however references will be given to where more extensive explanations can be found. Includes: • Exercises • Test data • Public domain software (SEISAN) available from http://extras.springer.com

Introduction to Seismology

Author: Peter M. Shearer
Publisher: Cambridge University Press
ISBN: 1139478753
Format: PDF, ePub, Mobi
Download Now
This book provides an approachable and concise introduction to seismic theory, designed as a first course for undergraduate students. It clearly explains the fundamental concepts, emphasizing intuitive understanding over lengthy derivations. Incorporating over 30% new material, this second edition includes all the topics needed for a one-semester course in seismology. Additional material has been added throughout including numerical methods, 3-D ray tracing, earthquake location, attenuation, normal modes, and receiver functions. The chapter on earthquakes and source theory has been extensively revised and enlarged, and now includes details on non-double-couple sources, earthquake scaling, radiated energy, and finite slip inversions. Each chapter includes worked problems and detailed exercises that give students the opportunity to apply the techniques they have learned to compute results of interest and to illustrate the Earth's seismic properties. Computer subroutines and datasets for use in the exercises are available at www.cambridge.org/shearer.

Earthquake Seismology Tools Techniques and Instrumentation

Author: Daniel Galea
Publisher:
ISBN: 9781682862162
Format: PDF, Docs
Download Now
Seismology is a prominent scientific field that aims to understand and analyse the seismic waves and tectonic movements. It plays a crucial part in study of several interdisciplinary subjects like geophysics, earthquake engineering, etc. This text attempts to elucidate the latest instruments and techniques used in seismology. Some of the topics discussed in this extensive book are structural geology, tectonophysics, geodynamics and geomorphology which will provide a comprehensive overview of the discipline. It strives to present an exhaustive insight into the current progress and advancements in the field of seismology. Students, researchers and professionals associated with the field of seismology and allied fields will benefit alike from this book.

Introduction to Volcanic Seismology

Author: Vyacheslav M Zobin
Publisher: Elsevier
ISBN: 0444636323
Format: PDF, ePub, Docs
Download Now
Introduction to Volcanic Seismology, Third Edition covers all aspects of volcano seismology, specifically focusing on recent studies and developments. This new edition expands on the historical aspects, including updated information on how volcanic seismology was handled in the past (instrumentation, processing techniques, number of observatories worldwide) that is compared to present day tactics. Updated case studies can be found throughout the book, providing information from the most studied volcanoes in the world, including those in Iceland. Additional features include descriptions of analog experiments, seismic networks, both permanent and temporal, and the link between volcanoes, plate tectonics, and mantle plumes. Beginning with an introduction to the history of volcanic seismology, the book then discusses models developed for the study of the origin of volcanic earthquakes of both a volcano-tectonic and eruption nature. In addition, the book covers a variety of topics from the different aspects of volcano-tectonic activity, the seismic events associated with the surface manifestations of volcanic activity, descriptions of eruption earthquakes, volcanic tremor, seismic noise of pyroclastic flows, explosion earthquakes, and the mitigation of volcanic hazards. Presents updated global case studies to provide real-world applications, including studies from Iceland Delivers illustrations alongside detailed descriptions of volcanic eruptions Includes essential information that students and practitioners need to understand the essential elements of volcanic eruptions Updates include information on how volcanic seismology was handled in the past (instrumentation, processing techniques, number of observatories worldwide) that are compared to the tactics of today

Routine Data Processing in Earthquake Seismology

Author: Jens Havskov
Publisher: Springer Science & Business Media
ISBN: 9048186978
Format: PDF, ePub, Mobi
Download Now
The purpose of this book is to get a practical understanding of the most common processing techniques in earthquake seismology. The book deals with manual methods and computer assisted methods. Each topic will be introduced with the basic theory followed by practical examples and exercises. There are manual exercises entirely based on the printed material of the book, as well as computer exercises based on public domain software. Most exercises are computer based. The software used, as well as all test data are available from http://extras.springer.com. This book is intended for everyone processing earthquake data, both in the observatory routine and in connection with research. Using the exercises, the book can also be used as a basis for university courses in earthquake processing. Since the main emphasis is on processing, the theory will only be dealt with to the extent needed to understand the processing steps, however references will be given to where more extensive explanations can be found. Includes: • Exercises • Test data • Public domain software (SEISAN) available from http://extras.springer.com

Principles of Seismology

Author: Agustín Udías
Publisher: Cambridge University Press
ISBN: 1108547451
Format: PDF, Mobi
Download Now
The second edition of Principles of Seismology has been extensively revised and updated to present a modern approach to observation seismology and the theory behind digital seismograms. It includes: a new chapter on Earthquakes, Earth's structure and dynamics; a considerably revised chapter on instrumentation, with new material on processing of modern digital seismograms and a list of website hosting data and seismological software; and 100 end-of-chapter problems. The fundamental physical concepts on which seismic theory is based are explained in full detail with step-by-step development of the mathematical derivations, demonstrating the relationship between motions recorded in digital seismograms and the mechanics of deformable bodies. With chapter introductions and summaries, numerous examples, newly drafted illustrations and new color figures, and an updated bibliography and reference list, this intermediate-level textbook is designed to help students develop the skills to tackle real research problems.

Strong Ground Motion Seismology

Author: Mustafa Özder Erdik
Publisher: Springer Science & Business Media
ISBN: 9401730954
Format: PDF, Kindle
Download Now
This book contains selected papers presented at the NATO Advanced Study Institute on "Strong Ground Motion Seismology", held in Ankara, Turkey between June 10 and 21, 1985. The strong ground motion resulting from a major earthquake determines the level of the seismic hazard to enable earthquake engineers to assess the structural performance and the consecutive risks to the property and life, as well as providing detailed information to seismologists about its source mechanism. From the earthquake engineering point the main problem is the specification of a design level ground motion for a given source-site-structure-economic life and risk combination through deterministic and probabilistic approaches. In seismology the strong motion data provide the high frequency information to determine the rupture process and the complexity of the source mechanism. The effects of the propagation path on the strong ground motion is a research area receiving sub stantial attenuation both from earthquake engineers and seismologists. The Institute provided a venue for the treatment of the subject matter by a series of lectures on earthquake source models and near field theories; effects of propagation paths and site conditions, numerical and empirical methods for prediction; data acquisition and analysis; hazard assessment and engineering application.

The Complex Faulting Process of Earthquakes

Author: J. Koyama
Publisher: Springer Science & Business Media
ISBN: 9401732612
Format: PDF, ePub, Mobi
Download Now
In seismology an earthquake source is described in terms of a fault with a particular rupture size. The faulting process of large earthquakes has been investigated in the last two decades through analyses of long-period seismo grams produced by advanced digital seismometry. By long-period far-field approximation, the earthquake source has been represented by physical parameters such as s~ismic moment, fault dimension and earthquake mag nitude. Meanwhile, destruction often results from strong ground motion due to large earthquakes at short distances. Since periods of strong ground motion are far shorter than those of seismic waves at teleseismic distances, the theory of long-period source process of earthquakes cannot be applied directly to strong ground motion at short distances. The excitation and propagation of high-frequency seismic waves are of special interest in recent earthquake seismology. In particular, the descrip tion and simulation of strong ground motion are very important not only for problems directly relevant to earthquake engineering, but also to the frac ture mechanics of earthquake faulting. Understanding of earthquake sources has been developed by investigating the complexity of faulting processes for the case of large earthquakes. Laboratory results on rock failures have also advanced the understanding of faulting mechanisms. Various attempts have been made to simulate, theoretically and empirically, the propagation of short-period seismic waves in the heterogeneous real earth.