Introduction to Geophysical Fluid Dynamics

Author: Benoit Cushman-Roisin
Publisher: Academic Press
ISBN: 0120887592
Format: PDF, Mobi
Download Now
Inhaltsverzeichnis: I Fundamentals - 1: Introduction - 2: The Coriolis Force - 3: Equations of Fluid Motion - 4: Equations Governing Geophysical Flows - 5: Diffusive Processes - 6: Transport and FateII Rotation Effects - 7: Geostrophic Flows and Vorticity Dynamics - 8: Ekman layer - 9: Barotropic Waves - 10: Barotropic Instability - III Stratification Effects - 11: Stratification - 12: Layered Models - 13: Internal Waves - 14: Turbulence in Stratified Fluids - IV Combined Rotation and Stratification Effects - 15: Dynamics of Stratified Rotating Flows - 16: Quasi-Geostrophic Dynamics - 17: Instabilities of Rotating Stratified Flows - 18: Fronts, Jets and VorticesV Special Topics - 19: Atmospheric General Circulation - 20: Oceanic General Circulation - 21: Equatorial Dynamics - 22: Data Assimilation - VI Web-site information Appendix A: Elements of Fluid Mechanics - Appendix B: Wave KinematicsAppendix C: Recapitulation of Numerical SchemesReferencesCD-ROM

Geophysical Fluid Dynamics

Author: J. Pedlosky
Publisher: Springer Science & Business Media
ISBN: 1468400711
Format: PDF, ePub, Docs
Download Now
The content of this book is based, largely, on the core curriculum in geophys ical fluid dynamics which I and my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same time, the diversity of interests of our students is so great that no curriculum can truly be exhaust ive in such a curriculum period. It seems to me that the best that can be achieved as a compromise is a systematic introduction to some important segment of the total scope of geophysical fluid dynamics which is illustrative of its most fruitful methods.

Fundamentals of Geophysical Fluid Dynamics

Author: James C. McWilliams
Publisher: Cambridge University Press
ISBN: 052185637X
Format: PDF, Mobi
Download Now
Intermediate/advanced textbook which provides concise and accessible introduction to GFD for broad range of students.

Atmospheric and Oceanic Fluid Dynamics

Author: Geoffrey K. Vallis
Publisher: Cambridge University Press
ISBN: 110706550X
Format: PDF
Download Now
The atmosphere and ocean are two of the most important components of the climate system, and fluid dynamics is central to our understanding of both. This book provides a unified and comprehensive treatment of the field that blends classical results with modern interpretations. It takes the reader seamlessly from the basics to the frontiers of knowledge, from the equations of motion to modern theories of the general circulation of the atmosphere and ocean. These concepts are illustrated throughout the book with observations and numerical examples. As well as updating existing chapters, this full-color second edition includes new chapters on tropical dynamics, El Nio, the stratosphere and gravity waves. Supplementary resources are provided online, including figures from the book and problem sets, making this new edition an ideal resource for students in the atmospheric, oceanic and climate sciences, as well as in applied mathematics and engineering.

Numerical Models of Oceans and Oceanic Processes

Author: Lakshmi H. Kantha
Publisher: Elsevier
ISBN: 9780080512907
Format: PDF, ePub, Mobi
Download Now
Oceans play a pivotal role in our weather and climate. Ocean-borne commerce is vital to our increasingly close-knit global community. Yet we do not fully understand the intricate details of how they function, how they interact with the atmosphere, and what the limits are to their biological productivity and their tolerance to wastes. While satellites are helping us to fill in the gaps, numerical ocean models are playing an important role in increasing our ability to comprehend oceanic processes, monitor the current state of the oceans, and to a limited extent, even predict their future state. Numerical Models of Oceans and Oceanic Processes is a survey of the current state of knowledge in this field. It brings together a discussion of salient oceanic dynamics and processes, numerical solution methods, and ocean models to provide a comprehensive treatment of the topic. Starting with elementary concepts in ocean dynamics, it deals with equatorial, mid-latitude, high latitude, and coastal dynamics from the perspective of a modeler. A comprehensive and up-to-date chapter on tides is also included. This is followed by a discussion of different kinds of numerical ocean models and the pre- and post-processing requirements and techniques. Air-sea and ice-ocean coupled models are described, as well as data assimilation and nowcast/forecasts. Comprehensive appendices on wavelet transforms and empirical orthogonal functions are also included. This comprehensive and up-to-date survey of the field should be of interest to oceanographers, atmospheric scientists, and climatologists. While some prior knowledge of oceans and numerical modeling is helpful, the book includes an overview of enough elementary material so that along with its companion volume, Small Scale Processes in Geophysical Flows, it should be useful to both students new to the field and practicing professionals. * Comprehensive and up-to-date review * Useful for a two-semester (or one-semester on selected topics) graduate level course * Valuable reference on the topic * Essential for a better understanding of weather and climate

Physical Oceanography

Author: Reza Malek-Madani
Publisher: CRC Press
ISBN: 1439898294
Format: PDF, Kindle
Download Now
Accessible to advanced undergraduate students, Physical Oceanography: A Mathematical Introduction with MATLAB® demonstrates how to use the basic tenets of multivariate calculus to derive the governing equations of fluid dynamics in a rotating frame. It also explains how to use linear algebra and partial differential equations (PDEs) to solve basic initial-boundary value problems that have become the hallmark of physical oceanography. The book makes the most of MATLAB’s matrix algebraic functions, differential equation solvers, and visualization capabilities. Focusing on the interplay between applied mathematics and geophysical fluid dynamics, the text presents fundamental analytical and computational tools necessary for modeling ocean currents. In physical oceanography, the fluid flows of interest occur on a planet that rotates; this rotation can balance the forces acting on the fluid particles in such a delicate fashion to produce exquisite phenomena, such as the Gulf Stream, the Jet Stream, and internal waves. It is precisely because of the role that rotation plays in oceanography that the field is fundamentally different from the rectilinear fluid flows typically observed and measured in laboratories. Much of this text discusses how the existence of the Gulf Stream can be explained by the proper balance among the Coriolis force, wind stress, and molecular frictional forces. Through the use of MATLAB, the author takes a fresh look at advanced topics and fundamental problems that define physical oceanography today. The projects in each chapter incorporate a significant component of MATLAB programming. These projects can be used as capstone projects or honors theses for students inclined to pursue a special project in applied mathematics.

Atmosphere Ocean Dynamics

Author: Adrian E. Gill
Publisher: Elsevier
ISBN: 1483281582
Format: PDF, Kindle
Download Now
Atmosphere-Ocean Dynamics deals with a systematic and unified approach to the dynamics of the ocean and atmosphere. The book reviews the relationship of the ocean-atmosphere and how this system functions. The text explains this system through radiative equilibrium models; the book also considers the greenhouse effect, the effects of convection and of horizontal gradients, and the variability in radiative driving of the earth. Equations in the book show the properties of a material element, mass conservation, the balance of scalar quantity (such as salinity), and the mathematical behavior of the ocean and atmosphere. The book also addresses how the ocean-atmosphere system tends to adjust to equilibrium, both in the absence and presence of driving forces such as gravity. The text also explains the effect of the earth's rotation on the system, as well as the application of forced motions such as that produced by wind or temperature changes. The book explains tropical dynamics and the effects of variation of the Coriolis parameter with latitude. The text will be appreciated by meteorologists, environmentalists, students studying hydrology, and people working in general earth sciences.

Waves in the Ocean and Atmosphere

Author: Joseph Pedlosky
Publisher: Springer Science & Business Media
ISBN: 3662051311
Format: PDF, ePub
Download Now
A study of the fundamental theory of waves appropriate for first year graduate students in oceanography, meteorology and associated sciences. Starting with an elementary overview of the basic wave concept, specific wave phenomena are then examined, including: surface gravity waves, internal gravity waves, lee waves, waves in the presence of rotation, and geostrophic adjustment. Each wave topic is used to introduce either a new technique or concept in general wave theory. Emphasis is placed on connectivity between the various subjects and on the physical interpretation of the mathematical results. The book contains numerous exercises at the end of the respective chapters.

Waves and Mean Flows

Author: Oliver Bühler
Publisher: Cambridge University Press
ISBN: 1107783216
Format: PDF, ePub
Download Now
Interactions between waves and mean flows play a crucial role in understanding the long-term aspects of atmospheric and oceanographic modelling. Indeed, our ability to predict climate change hinges on our ability to model waves accurately. This book gives a modern account of the nonlinear interactions between waves and mean flows, such as shear flows and vortices. A detailed account of the theory of linear dispersive waves in moving media is followed by a thorough introduction to classical wave-mean interaction theory. The author then extends the scope of the classical theory and lifts its restriction to zonally symmetric mean flows. It can be used as a fundamental reference, a course text, or by geophysicists and physicists needing a first introduction. This second edition includes brand new material, including a section on Langmuir circulations and the Craik–Leibovich instability. The author has also added exercises to aid students' learning.