Introduction to Group Theory with Applications

Author: Gerald Burns
Publisher: Academic Press
ISBN: 1483191494
Format: PDF, Docs
Download Now
Introduction to Group Theory with Applications covers the basic principles, concepts, mathematical proofs, and applications of group theory. This book is divided into 13 chapters and begins with discussions of the elementary topics related to the subject, including symmetry operations and group concepts. The succeeding chapters deal with the properties of matrix representations of finite groups, the vibrations of molecular and crystals, vibrational wave function, selection rules, and molecular approximations. These topics are followed by reviews of the basic of quantum mechanics, crystal field theory, atomic physics, hybrid functions, and molecular orbital theory. The last chapters describe the symmetry of crystal lattices, the band theory of solids, and the full rotation group. This book will be of value to undergraduate mathematics and physics students.

Materials Science in Energy Technology

Author: G Libowitz
Publisher: Elsevier
ISBN: 0323145531
Format: PDF, Mobi
Download Now
Materials Science in Energy Technology presents the fundamental properties of materials that are essential to a particular energy application. This book discusses the areas of research required for the development of other materials for that application. Organized into 10 chapters, this book starts with an overview of the methods of producing energy, which are arranged in approximate chronological order as to when the methods were or will be first utilized. This text then reviews the wide scope of materials associated with nuclear fission technology. Other chapters consider the major materials requirements and problems for ceramics in magnetohydrodynamic (MHD) power generators. This book discusses as well the three processes that are involved in the photovoltaic effect, including light absorption, charge separation in the photovoltaic cell, and migration of charge carriers. The final chapter deals with the physical properties of superconductors. This book is a valuable resource for materials scientists, metallurgists, physicists, and chemists.

Electron and Positron Spectroscopies in Materials Science and Engineering

Author: Otto Buck
Publisher: Academic Press
ISBN: 1483191486
Format: PDF, ePub
Download Now
Electron and Positron Spectroscopies in Materials Science and Engineering presents the advances and limitations of instrumentations for surface and interface probing useful to metallurgical applications. It discusses the Auger electron spectroscopy and electron spectroscopy for chemical analysis. It addresses the means to determine the chemistry of the surface. Some of the topics covered in the book are the exo-electron emission; positron annihilation; extended x-ray absorption fine structure; high resolution electron microscopy; uniaxial monotonic deformation-induced dislocation substructure; and analytical electron microscopy. The mechanistic basis for exo-electron spectroscopy is covered. The correlation of fatigue and photoyield are discussed. The text describes the tribostimulated emission. A study of the quantitative measurement of fatigue damage is presented. A chapter is devoted to the fracture of oxide films on aluminium. Another section focuses on the positron annihilation experimental details and the creep-induced dislocation substructure. The book can provide useful information to scientists, engineers, students, and researchers.

Synthetic Modulated Structures

Author: Leroy L. Chang
Publisher: Elsevier
ISBN: 1483191621
Format: PDF, ePub, Docs
Download Now
Materials Science and Technology Series: Synthetic Modulated Structures focuses on synthetic modulated structures, which is described as any periodically perturbed materials with a repetition greater than the basic unit cell dimension. The book is organized into three parts. Part I provides a perspective of developments and structural characterization of the semiconductor and metal area. The electronic properties in different configurations and structures, including compositional and doping modulation are covered in Part II. Part III begins with preparation methods, followed by a discussion on distinctive fields of interest in metals, transport and magnetic properties, superconductivity, and diffusion. This publication is a good source for students and researchers conducting work in the general area of modulated structures.

Group Theory

Author: Mildred S. Dresselhaus
Publisher: Springer Science & Business Media
ISBN: 3540328971
Format: PDF, Mobi
Download Now
This concise, class-tested book was refined over the authors’ 30 years as instructors at MIT and the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory along with applications helps students to learn, understand and use it for their own needs. Thus, the theoretical background is confined to introductory chapters. Subsequent chapters develop new theory alongside applications so that students can retain new concepts, build on concepts already learned, and see interrelations between topics. Essential problem sets between chapters aid retention of new material and consolidate material learned in previous chapters.

An Introduction to the Theory of Diffraction

Author: C. J. Ball
Publisher: Elsevier
ISBN: 1483181421
Format: PDF, Kindle
Download Now
An Introduction to the Theory of Diffraction presents the fundamentals of diffraction theory. This book discusses other topics, such as absorption in cylindrical or slab-shaped specimens, which do not closely involve the fundamentals of diffraction. Organized into seven chapters, this book begins with an overview of the fundamentals of wave motion and a short account of the interaction of atoms with X-ray, electrons, and neutrons. This text then examines the differences between atomic scattering factors for the various radiations. Other chapters consider a number of problems in which the distribution of scattering sources is either one-dimensional in nature or can be reduced to one dimension. This book discusses as well the principle of superposition, which ensures that Fourier analysis has an application to diffraction theory. The final chapter deals with the importance of reciprocal lattice on the relation it bears to the crystal lattice. This book is a valuable resource for metallurgists.

Line Groups in Physics

Author: Milan Damnjanovic
Publisher: Springer Science & Business Media
ISBN: 3642111718
Format: PDF
Download Now
This volume gives a detailed and up-to-date overview of the line groups, the groups that describe the symmetry of quasi-one dimensional crystals. Nanotubes, nanowires, nanosprings, nanorods, and polymers are examples remarkable enough to have kept nanoscience as a leading field within material science and solid state physics for more than fifteen years now. The authors present the mathematical foundations, including classifications of the line groups, quasi one-dimensional crystals and quantum numbers, together with important applications. Extensive illustrations related to the physics of nanotubes make the book essential reading in this field above all. The book clearly demonstrates how symmetry is a most profound property of nature and contains valuable results that are published here for the first time.

Introduction to Ferroic Materials

Author: Vinod Wadhawan
Publisher: CRC Press
ISBN: 9789056992866
Format: PDF
Download Now
Ferroic materials are important, not only because of the improved understanding of condensed matter, but also because of their present and potential device applications. This book presents a unified description of ferroic materials at an introductory level, with the unifying factor being the occurrence of nondisruptive phase transitions in crystals that alter point-group symmetry. The book also aims to further systemitize the subject of ferroic materials, employing some formal, carefully worded, definitions and classification schemes. The basic physical principles leading to the wide-ranging applications of ferroic materials are also explained, while placing extra emphasis on the utilitarian role of symmetry in materials science.