Introduction to Hamiltonian Dynamical Systems and the N Body Problem

Author: Kenneth R. Meyer
Publisher: Springer
ISBN: 3319536915
Format: PDF, ePub, Docs
Download Now
This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)

Introduction to Hamiltonian Dynamical Systems and the N Body Problem

Author: Kenneth Meyer
Publisher: Springer
ISBN: 9780387097244
Format: PDF, ePub, Docs
Download Now
Arising from a graduate course taught to math and engineering students, this text provides a systematic grounding in the theory of Hamiltonian systems, as well as introducing the theory of integrals and reduction. A number of other topics are covered too.

Metamorphoses of Hamiltonian Systems with Symmetries

Author: Konstantinos Efstathiou
Publisher: Springer Science & Business Media
ISBN: 9783540243168
Format: PDF, ePub
Download Now
Modern notions and important tools of classical mechanics are used in the study of concrete examples that model physically significant molecular and atomic systems. The parametric nature of these examples leads naturally to the study of the major qualitative changes of such systems (metamorphoses) as the parameters are varied. The symmetries of these systems, discrete or continuous, exact or approximate, are used to simplify the problem through a number of mathematical tools and techniques like normalization and reduction. The book moves gradually from finding relative equilibria using symmetry, to the Hamiltonian Hopf bifurcation and its relation to monodromy and, finally, to generalizations of monodromy.

Local and Semi Local Bifurcations in Hamiltonian Dynamical Systems

Author: Heinz Hanßmann
Publisher: Springer Verlag
ISBN: 9783540388944
Format: PDF, ePub, Docs
Download Now
Once again KAM theory is committed in the context of nearly integrable Hamiltonian systems. While elliptic and hyperbolic tori determine the distribution of maximal invariant tori, they themselves form n- parameter families. Hence, without the need for untypical conditions or external parameters, torus bifurcations of high co-dimension may be found in a single given Hamiltonian system. The text moves gradually from the integrable case, in which symmetries allow for reduction to bifurcating equilibria, to non-integrability, where smooth parametrisations have to be replaced by Cantor sets. Planar singularities and their versal unfoldings are an important ingredient that helps to explain the underlying dynamics in a transparent way.

Introduction to Mechanics and Symmetry

Author: J.E. Marsden
Publisher: Springer Science & Business Media
ISBN: 0387217924
Format: PDF, ePub, Docs
Download Now
A development of the basic theory and applications of mechanics with an emphasis on the role of symmetry. The book includes numerous specific applications, making it beneficial to physicists and engineers. Specific examples and applications show how the theory works, backed by up-to-date techniques, all of which make the text accessible to a wide variety of readers, especially senior undergraduates and graduates in mathematics, physics and engineering. This second edition has been rewritten and updated for clarity throughout, with a major revamping and expansion of the exercises. Internet supplements containing additional material are also available.

Notes on Dynamical Systems

Author: Jürgen Moser
Publisher: American Mathematical Soc.
ISBN: 0821835777
Format: PDF, ePub
Download Now
This book is an introduction to the field of dynamical systems, in particular, to the special class of Hamiltonian systems. The authors aimed at keeping the requirements of mathematical techniques minimal but giving detailed proofs and many examples and illustrations from physics and celestial mechanics. After all, the celestial $N$-body problem is the origin of dynamical systems and gave rise in the past to many mathematical developments. Jurgen Moser (1928-1999) was a professor atthe Courant Institute, New York, and then at ETH Zurich. He served as president of the International Mathematical Union and received many honors and prizes, among them the Wolf Prize in mathematics. Jurgen Moser is the author of several books, among them Stable and Random Motions in DynamicalSystems. Eduard Zehnder is a professor at ETH Zurich. He is coauthor with Helmut Hofer of the book Symplectic Invariants and Hamiltonian Dynamics. Information for our distributors: Titles in this series are copublished with the Courant Institute of Mathematical Sciences at New York University.