Introduction to Homotopy Theory

Author: Martin Arkowitz
Publisher: Springer Science & Business Media
ISBN: 9781441973290
Format: PDF, Kindle
Download Now
This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: Basic Homotopy; H-spaces and co-H-spaces; fibrations and cofibrations; exact sequences of homotopy sets, actions, and coactions; homotopy pushouts and pullbacks; classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; homotopy Sets; homotopy and homology decompositions of spaces and maps; and obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. The book can be used as a text for the second semester of an advanced ungraduate or graduate algebraic topology course.

Motivic Homotopy Theory

Author: Bjorn Ian Dundas
Publisher: Springer Science & Business Media
ISBN: 3540458956
Format: PDF, ePub
Download Now
This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work.

Introduction to Homotopy Theory

Author: Paul Selick
Publisher: American Mathematical Soc.
ISBN: 9780821844366
Format: PDF, Docs
Download Now
This text is based on a one-semester graduate course taught by the author at The Fields Institute in fall 1995 as part of the homotopy theory program which constituted the Institute's major program that year. The intent of the course was to bring graduate students who had completed a first course in algebraic topology to the point where they could understand research lectures in homotopy theory and to prepare them for the other, more specialized graduate courses being held in conjunction with the program. The notes are divided into two parts: prerequisites and the course proper. Part I, the prerequisites, contains a review of material often taught in a first course in algebraic topology. It should provide a useful summary for students and non-specialists who are interested in learning the basics of algebraic topology. Included are some basic category theory, point set topology, the fundamental group, homological algebra, singular and cellular homology, and Poincare duality. Part II covers fibrations and cofibrations, Hurewicz and cellular approximation theorems, topics in classical homotopy theory, simplicial sets, fiber bundles, Hopf algebras, spectral sequences, localization, generalized homology and cohomology operations. This book collects in one place the material that a researcher in algebraic topology must know. The author has attempted to make this text a self-contained exposition. Precise statements and proofs are given of ``folk'' theorems which are difficult to find or do not exist in the literature.

Modern Classical Homotopy Theory

Author: Jeffrey Strom
Publisher: American Mathematical Soc.
ISBN: 0821852868
Format: PDF, Kindle
Download Now
The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.

Introduction to Homotopy Theory

Author: Martin Arkowitz
Publisher: Springer Science & Business Media
ISBN: 9781441973290
Format: PDF, ePub
Download Now
This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: Basic Homotopy; H-spaces and co-H-spaces; fibrations and cofibrations; exact sequences of homotopy sets, actions, and coactions; homotopy pushouts and pullbacks; classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; homotopy Sets; homotopy and homology decompositions of spaces and maps; and obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. The book can be used as a text for the second semester of an advanced ungraduate or graduate algebraic topology course.

Rational Homotopy Theory

Author: Yves Felix
Publisher: Springer Science & Business Media
ISBN: 146130105X
Format: PDF, ePub
Download Now
Rational homotopy theory is a subfield of algebraic topology. Written by three authorities in the field, this book contains all the main theorems of the field with complete proofs. As both notation and techniques of rational homotopy theory have been considerably simplified, the book presents modern elementary proofs for many results that were proven ten or fifteen years ago.

An Introduction to Manifolds

Author: Loring W. Tu
Publisher: Springer Science & Business Media
ISBN: 1441974008
Format: PDF, Mobi
Download Now
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

Cubical Homotopy Theory

Author: Brian A. Munson
Publisher: Cambridge University Press
ISBN: 1107030250
Format: PDF, Kindle
Download Now
A modern, example-driven introduction to cubical diagrams and related topics such as homotopy limits and cosimplicial spaces.