Introduction to Mathematical Proofs Second Edition

Author: Charles Roberts
Publisher: CRC Press
ISBN: 1482246880
Format: PDF, ePub
Download Now
Introduction to Mathematical Proofs helps students develop the necessary skills to write clear, correct, and concise proofs. Unlike similar textbooks, this one begins with logic since it is the underlying language of mathematics and the basis of reasoned arguments. The text then discusses deductive mathematical systems and the systems of natural numbers, integers, rational numbers, and real numbers. It also covers elementary topics in set theory, explores various properties of relations and functions, and proves several theorems using induction. The final chapters introduce the concept of cardinalities of sets and the concepts and proofs of real analysis and group theory. In the appendix, the author includes some basic guidelines to follow when writing proofs. This new edition includes more than 125 new exercises in sections titled More Challenging Exercises. Also, numerous examples illustrate in detail how to write proofs and show how to solve problems. These examples can serve as models for students to emulate when solving exercises. Several biographical sketches and historical comments have been included to enrich and enliven the text. Written in a conversational style, yet maintaining the proper level of mathematical rigor, this accessible book teaches students to reason logically, read proofs critically, and write valid mathematical proofs. It prepares them to succeed in more advanced mathematics courses, such as abstract algebra and analysis.

Mathematical Proofs

Author: Gary Chartrand
Publisher: Pearson
ISBN: 0134766466
Format: PDF, Mobi
Download Now
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For courses in Transition to Advanced Mathematics or Introduction to Proof. Meticulously crafted, student-friendly text that helps build mathematical maturity Mathematical Proofs: A Transition to Advanced Mathematics, 4th Edition introduces students to proof techniques, analyzing proofs, and writing proofs of their own that are not only mathematically correct but clearly written. Written in a student-friendly manner, it provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as optional excursions into fields such as number theory, combinatorics, and calculus. The exercises receive consistent praise from users for their thoughtfulness and creativity. They help students progress from understanding and analyzing proofs and techniques to producing well-constructed proofs independently. This book is also an excellent reference for students to use in future courses when writing or reading proofs. 0134746759 / 9780134746753 Chartrand/Polimeni/Zhang, Mathematical Proofs: A Transition to Advanced Mathematics, 4/e

Journey into Mathematics

Author: Joseph J. Rotman
Publisher: Courier Corporation
ISBN: 0486151689
Format: PDF, Mobi
Download Now
This treatment covers the mechanics of writing proofs, the area and circumference of circles, and complex numbers and their application to real numbers. 1998 edition.

A Transition to Advanced Mathematics

Author: Douglas Smith
Publisher: Cengage Learning
ISBN: 1285463269
Format: PDF, Docs
Download Now
A TRANSITION TO ADVANCED MATHEMATICS helps students to bridge the gap between calculus and advanced math courses. The most successful text of its kind, the 8th edition continues to provide a firm foundation in major concepts needed for continued study and guides students to think and express themselves mathematically—to analyze a situation, extract pertinent facts, and draw appropriate conclusions. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Introduction to Mathematical Proofs

Author: Charles Roberts
Publisher: Chapman and Hall/CRC
ISBN: 9781420069556
Format: PDF, ePub, Docs
Download Now
Shows How to Read & Write Mathematical Proofs Ideal Foundation for More Advanced Mathematics Courses Introduction to Mathematical Proofs: A Transition facilitates a smooth transition from courses designed to develop computational skills and problem solving abilities to courses that emphasize theorem proving. It helps students develop the skills necessary to write clear, correct, and concise proofs. Unlike similar textbooks, this one begins with logic since it is the underlying language of mathematics and the basis of reasoned arguments. The text then discusses deductive mathematical systems and the systems of natural numbers, integers, rational numbers, and real numbers. It also covers elementary topics in set theory, explores various properties of relations and functions, and proves several theorems using induction. The final chapters introduce the concept of cardinalities of sets and the concepts and proofs of real analysis and group theory. In the appendix, the author includes some basic guidelines to follow when writing proofs. Written in a conversational style, yet maintaining the proper level of mathematical rigor, this accessible book teaches students to reason logically, read proofs critically, and write valid mathematical proofs. It will prepare them to succeed in more advanced mathematics courses, such as abstract algebra and geometry.

Introduction to Mathematical Structures and Proofs

Author: Larry J. Gerstein
Publisher: Springer Science & Business Media
ISBN: 1461442656
Format: PDF, Mobi
Download Now
As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor—and the flexible thinking—required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader. The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on springer.com for instructors adopting the text for a course.

Mathematical Proofs Pearson New International Edition

Author: Gary Chartrand
Publisher: Pearson Higher Ed
ISBN: 1292052341
Format: PDF
Download Now
Mathematical Proofs: A Transition to Advanced Mathematics, Third Edition, prepares students for the more abstract mathematics courses that follow calculus. Appropriate for self-study or for use in the classroom, this text introduces students to proof techniques, analyzing proofs, and writing proofs of their own. Written in a clear, conversational style, this book provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory. It is also a great reference text that students can look back to when writing or reading proofs in their more advanced courses.

Introduction to Advanced Mathematics A Guide to Understanding Proofs

Author: Connie M. Campbell
Publisher: Cengage Learning
ISBN: 0547165382
Format: PDF, ePub, Mobi
Download Now
This text offers a crucial primer on proofs and the language of mathematics. Brief and to the point, it lays out the fundamental ideas of abstract mathematics and proof techniques that students will need to master for other math courses. Campbell presents these concepts in plain English, with a focus on basic terminology and a conversational tone that draws natural parallels between the language of mathematics and the language students communicate in every day. The discussion highlights how symbols and expressions are the building blocks of statements and arguments, the meanings they convey, and why they are meaningful to mathematicians. In-class activities provide opportunities to practice mathematical reasoning in a live setting, and an ample number of homework exercises are included for self-study. This text is appropriate for a course in Foundations of Advanced Mathematics taken by students who've had a semester of calculus, and is designed to be accessible to students with a wide range of mathematical proficiency. It can also be used as a self-study reference, or as a supplement in other math courses where additional proofs practice is needed. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

A Transition to Advanced Mathematics

Author: William Johnston
Publisher: OUP USA
ISBN: 0195310764
Format: PDF, ePub, Docs
Download Now
A Transition to Advanced Mathematics promotes the goals of a ``bridge'' course in mathematics, helping to lead students from courses in the calculus sequence to theoretical upper-level mathematics courses. The text simultaneously promotes the goals of a ``survey'' course, describing the intriguing questions and insights fundamental to many diverse areas of mathematics.

The Nuts and Bolts of Proofs

Author: Antonella Cupillari
Publisher: Academic Press
ISBN: 0123822181
Format: PDF
Download Now
The Nuts and Bolts of Proofs: An Introduction to Mathematical Proofs provides basic logic of mathematical proofs and shows how mathematical proofs work. It offers techniques for both reading and writing proofs. The second chapter of the book discusses the techniques in proving if/then statements by contrapositive and proofing by contradiction. It also includes the negation statement, and/or. It examines various theorems, such as the if and only-if, or equivalence theorems, the existence theorems, and the uniqueness theorems. In addition, use of counter examples, mathematical induction, composite statements including multiple hypothesis and multiple conclusions, and equality of numbers are covered in this chapter. The book also provides mathematical topics for practicing proof techniques. Included here are the Cartesian products, indexed families, functions, and relations. The last chapter of the book provides review exercises on various topics. Undergraduate students in engineering and physical science will find this book invaluable. Jumps right in with the needed vocabulary—gets students thinking like mathematicians from the beginning Offers a large variety of examples and problems with solutions for students to work through on their own Includes a collection of exercises without solutions to help instructors prepare assignments Contains an extensive list of basic mathematical definitions and concepts needed in abstract mathematics