Introduction to Physics in Modern Medicine Second Edition

Author: Suzanne Amador Kane
Publisher: Taylor & Francis
ISBN: 1439894892
Format: PDF, ePub
Download Now
From x-rays to lasers to magnetic resonance imaging, developments in basic physics research have been transformed into medical technologies for imaging, surgery and therapy at an ever accelerating pace. Physics has joined with genetics and molecular biology to define much of what is modern in modern medicine. Covering a wide range of applications, Introduction to Physics in Modern Medicine, Second Edition builds on the bestselling original. Based on a course taught by the author, the book provides medical personnel and students with an exploration of the physics-related applications found in state-of-the-art medical centers. Requiring no previous acquaintance with physics, biology, or chemistry and keeping mathematics to a minimum, the application-dedicated chapters adhere to simple and self-contained qualitative explanations that make use of examples and illustrations. With an enhanced emphasis on digital imaging and computers in medicine, the text gives readers a fundamental understanding of the practical application of each concept and the basic science behind it. This book provides medical students with an excellent introduction to how physics is applied in medicine, while also providing students in physics with an introduction to medical physics. Each chapter includes worked examples and a complete list of problems and questions. That so much of the technology discussed in this book was the stuff of dreams just a few years ago, makes this book as fascinating as it is practical, both for those in medicine as well as those in physics who might one day discover that the project they are working on is basis for the next great medical application. This edition: Covers hybrid scanners for cancer imaging and the interplay of molecular medicine with imaging technologies such as MRI, CT and PET Looks at camera pills that can film from the inside upon swallowing and advances in robotic surgery devices Explores Intensity-Modulated Radiation Therapy, proton therapy, and other new forms of cancer treatment Reflects on the use of imaging technologies in developing countries

Introduction to Physics in Modern Medicine

Author: Suzanne Amador Kane
Publisher: CRC Press
ISBN: 9780415301718
Format: PDF, ePub
Download Now
The medical applications of physics are not typically covered in introductory physics courses. Introduction to Physics in Modern Medicine fills that gap by explaining the physical principles behind technologies such as surgical lasers or computed tomography (CT or CAT) scanners. Each chapter includes a short explanation of the scientific background, making this book highly accessible to those without an advanced knowledge of physics. It is intended for medicine and health studies students who need an elementary background in physics, but it also serves well as a non-mathematical introduction to applied physics for undergraduate students in physics, engineering, and other disciplines.

Introduction to Physics in Modern Medicine

Author: Suzanne Amador Kane
Publisher: CRC Press
ISBN: 9780415299633
Format: PDF, ePub, Docs
Download Now
The medical applications of physics are not typically covered in introductory physics courses. Introduction to Physics in Modern Medicine fills that gap by explaining the physical principles behind technologies such as surgical lasers or computed tomography (CT or CAT) scanners. Each chapter includes a short explanation of the scientific background, making this book highly accessible to those without an advanced knowledge of physics. It is intended for medicine and health studies students who need an elementary background in physics, but it also serves well as a non-mathematical introduction to applied physics for undergraduate students in physics, engineering, and other disciplines.

Applications of Modern Physics in Medicine

Author: Mark Strikman
Publisher: Princeton University Press
ISBN: 1400865433
Format: PDF, Mobi
Download Now
Many remarkable medical technologies, diagnostic tools, and treatment methods have emerged as a result of modern physics discoveries in the last century—including X-rays, radiation treatment, laser surgery, high-resolution ultrasound scans, computerized tomography (CT) scans, and magnetic resonance imaging. This undergraduate-level textbook describes the fundamental physical principles underlying these technological advances, emphasizing their applications to the practice of modern medicine. Intended for science and engineering students with one year of introductory physics background, this textbook presents the medical applications of fundamental principles of physics to students who are considering careers in medical physics, biophysics, medicine, or nuclear engineering. It also serves as an excellent reference for advanced students, as well as medical and health researchers, practitioners, and technicians who are interested in developing the background required to understand the changing landscape of medical science. Practice exercises are included and solutions are available separately in an instructor's manual. Complete discussion of the fundamental physical principles underlying modern medicine Accessible exploration of the physics encountered in a typical visit to a doctor Practice exercises are included and solutions are provided in a separate instructor’s manual (available to professors) A companion website (modernphysicsinmedicine.com) presents supplementary materials

Modern Physics

Author: Jeremy I Pfeffer
Publisher: World Scientific Publishing Company
ISBN: 1908979577
Format: PDF, ePub
Download Now
This second edition of the successful textbook, Modern Physics: An Introductory Text, preserves the unique blend of readability, scientific rigour and authenticity that made its predecessor so indispensible a text for non-physics science majors. As in the first edition, it sets out to present 20th century physics in a form accessible and useful to students of the life sciences, medicine, agricultural, earth and environmental sciences. It is also valuable as a first reader and source text for students majoring in the physical sciences and engineering. Two new chapters have been added, one on Einstein's elucidation of Brownian Motion and the second on Quantum Electrodynamics. Taking the discovery of the electron, the formulation of Maxwellian electromagnetism and Einstein's elucidation of Brownian motion as its starting point, the text proceeds to a comprehensive presentation of the three seminal ideas of 20th century physics: Special and General Relativity, Quantum Theory and the Nuclear Atom. From here the text moves on to the new discoveries prompted by these ideas, their impact on our understanding of natural phenomena and their application to the development and invention of the devices and technologies that define the 21st century. Questions, exercises and problems for student assignments are found at the end of each of the six parts into which the text is divided; answers to the numerical questions are at the end of the book. The techniques by which trigonometric functions, phasors (rotating vectors) and complex numbers are employed in the mathematical description of wave motion are summarised in a supplementary section. In consideration of the audience for whom the book is intended, all mathematics other than that required for descriptive or illustrative purposes has been omitted from the main body of the text and incorporated into the 47 worked examples and 11 appendices. Sample Chapter(s) Preface and Table of Contents (69 KB) Chapter 1.1: The Electron (65 KB) Request Inspection Copy

Diagnostic Ultrasound Imaging Inside Out

Author: Thomas L. Szabo
Publisher: Academic Press
ISBN: 012396542X
Format: PDF, ePub, Docs
Download Now
Diagnostic Ultrasound Imaging provides a unified description of the physical principles of ultrasound imaging, signal processing, systems and measurements. This comprehensive reference is a core resource for both graduate students and engineers in medical ultrasound research and design. With continuing rapid technological development of ultrasound in medical diagnosis, it is a critical subject for biomedical engineers, clinical and healthcare engineers and practitioners, medical physicists, and related professionals in the fields of signal and image processing. The book contains 17 new and updated chapters covering the fundamentals and latest advances in the area, and includes four appendices, 450 figures (60 available in color on the companion website), and almost 1,500 references. In addition to the continual influx of readers entering the field of ultrasound worldwide who need the broad grounding in the core technologies of ultrasound, this book provides those already working in these areas with clear and comprehensive expositions of these key new topics as well as introductions to state-of-the-art innovations in this field. Enables practicing engineers, students and clinical professionals to understand the essential physics and signal processing techniques behind modern imaging systems as well as introducing the latest developments that will shape medical ultrasound in the future Suitable for both newcomers and experienced readers, the practical, progressively organized applied approach is supported by hands-on MATLAB® code and worked examples that enable readers to understand the principles underlying diagnostic and therapeutic ultrasound Covers the new important developments in the use of medical ultrasound: elastography and high-intensity therapeutic ultrasound. Many new developments are comprehensively reviewed and explained, including aberration correction, acoustic measurements, acoustic radiation force imaging, alternate imaging architectures, bioeffects: diagnostic to therapeutic, Fourier transform imaging, multimode imaging, plane wave compounding, research platforms, synthetic aperture, vector Doppler, transient shear wave elastography, ultrafast imaging and Doppler, functional ultrasound and viscoelastic models

An Introduction to Radiation Protection in Medicine

Author: Jamie V. Trapp
Publisher: CRC Press
ISBN: 1584889659
Format: PDF, ePub, Mobi
Download Now
Combining facets of health physics with medicine, An Introduction to Radiation Protection in Medicine covers the background of the subject and the medical situations where radiation is the tool to diagnose or treat human disease. Encouraging newcomers to the field to properly and efficiently function in a versatile and evolving work setting, it familiarizes them with the particular problems faced during the application of ionizing radiation in medicine. The text builds a fundamental knowledge base before providing practical descriptions of radiation safety in medicine. It covers basic issues related to radiation protection, including the physical science behind radiation protection and the radiobiological basis of radiation protection. The text also presents operational and managerial tools for organizing radiation safety in a medical workplace. Subsequent chapters form the core of the book, focusing on the practice of radiation protection in different medical disciplines. They explore a range of individual uses of ionizing radiation in various branches of medicine, including radiology, nuclear medicine, external beam radiotherapy, and brachytherapy. With contributions from experienced practicing physicists, this book provides essential information about dealing with radiation safety in the rapidly shifting and diverse environment of medicine.

Medical Imaging Physics

Author: William R. Hendee
Publisher: John Wiley & Sons
ISBN: 047146113X
Format: PDF, Kindle
Download Now
This comprehensive publication covers all aspects of image formation in modern medical imaging modalities, from radiography, fluoroscopy, and computed tomography, to magnetic resonance imaging and ultrasound. It addresses the techniques and instrumentation used in the rapidly changing field of medical imaging. Now in its fourth edition, this text provides the reader with the tools necessary to be comfortable with the physical principles, equipment, and procedures used in diagnostic imaging, as well as appreciate the capabilities and limitations of the technologies.