Introduction to Proteins

Author: Amit Kessel
Publisher: CRC Press
ISBN: 9781439810729
Format: PDF, Mobi
Download Now
As the tools and techniques of structural biophysics assume greater roles in biological research and a range of application areas, learning how proteins behave becomes crucial to understanding their connection to the most basic and important aspects of life. With more than 350 color images throughout, Introduction to Proteins: Structure, Function, and Motion presents a unified, in-depth treatment of the relationship between the structure, dynamics, and function of proteins. Taking a structural–biophysical approach, the authors discuss the molecular interactions and thermodynamic changes that transpire in these highly complex molecules. The text incorporates various biochemical, physical, functional, and medical aspects. It covers different levels of protein structure, current methods for structure determination, energetics of protein structure, protein folding and folded state dynamics, and the functions of intrinsically unstructured proteins. The authors also clarify the structure–function relationship of proteins by presenting the principles of protein action in the form of guidelines. This comprehensive, color book uses numerous proteins as examples to illustrate the topics and principles and to show how proteins can be analyzed in multiple ways. It refers to many everyday applications of proteins and enzymes in medical disorders, drugs, toxins, chemical warfare, and animal behavior. Downloadable questions for each chapter are available at CRC Press Online.

Introduction to Proteins

Author: Amit Kessel
Publisher: CRC Press
ISBN: 1498747213
Format: PDF, ePub
Download Now
Introduction to Proteins shows how proteins can be analyzed in multiple ways. It refers to the roles of proteins and enzymes in diverse contexts and everyday applications, including medical disorders, drugs, toxins, chemical warfare, and animal behavior. This edition includes a brand-new chapter on enzymatic catalysis and biochemistry, an in-depth discussion of G-protein-coupled receptors (GPCRs), and a wider-scale description of methods for studying proteins.

Introduction to Protein Science

Author: Arthur Lesk
Publisher: Oxford University Press
ISBN: 0199541302
Format: PDF, ePub
Download Now
Introduction to Protein Science provides a broad introduction to the contemporary study of proteins in health and disease, suitable for students on biological, biochemical, and biomedical degrees internationally. The book relates the study of proteins to the context of modern high-throughput data streams of genomics and proteomics.

Introduction to Protein Structure

Author: Carl-Ivar Brändén
Publisher: Taylor & Francis
ISBN: 0815323050
Format: PDF, ePub, Docs
Download Now
This new edition gives an up-to-date account of the principles of protein structure, with examples of key proteins in their biological context, illustrated in colour to illuminate the structural principles described in the text.

Structure and Mechanism in Protein Science

Author: Alan Fersht
Publisher: World Scientific
ISBN: 9813225181
Format: PDF, ePub, Mobi
Download Now
This book is a guide for advanced undergraduates, post-graduates and researchers to the fundamental principles in studying kinetics and mechanism of processes concerning proteins. It provides a rare broad overview that concentrates on fundamental principles and understanding underlying the physics and chemistry. It is a single author text by someone who has direct experience in all of the areas covered.

A Mathematical Approach to Protein Biophysics

Author: L. Ridgway Scott
Publisher: Springer
ISBN: 3319660322
Format: PDF, ePub, Docs
Download Now
This book explores quantitative aspects of protein biophysics and attempts to delineate certain rules of molecular behavior that make atomic scale objects behave in a digital way. This book will help readers to understand how certain biological systems involving proteins function as digital information systems despite the fact that underlying processes are analog in nature. The in-depth explanation of proteins from a quantitative point of view and the variety of level of exercises (including physical experiments) at the end of each chapter will appeal to graduate and senior undergraduate students in mathematics, computer science, mechanical engineering, and physics, wanting to learn about the biophysics of proteins. L. Ridgway Scott has been Professor of Computer Science and of Mathematics at the University of Chicago since 1998, and the Louis Block Professor since 2001. He obtained a B.S. degree (Magna Cum Laude) from Tulane University in 1969 and a PhD degree in Mathematics from the Massachusetts Institute of Technology in 1973. Professor Scott has published over 130 papers and three books, extending over biophysics, parallel computing and fundamental computing aspects of structural mechanics, fluid dynamics, nuclear engineering, and computational chemistry. Ariel Fernández (born Ariel Fernández Stigliano) is an Argentinian-American physical chemist and mathematician. He obtained his Ph. D. degree in Chemical Physics from Yale University and held the Karl F. Hasselmann Endowed Chair Professorship in Bioengineering at Rice University. He is currently involved in research and entrepreneurial activities at various consultancy firms. Ariel Fernández authored three books on translational medicine and biophysics, and published 360 papers in professional journals. He holds two patents in the field of biotechnology.

Protein Physics

Author: Alexei V. Finkelstein
Publisher: Elsevier
ISBN: 0081012365
Format: PDF, ePub, Mobi
Download Now
Protein Physics: A Course of Lectures covers the most general problems of protein structure, folding and function. It describes key experimental facts and introduces concepts and theories, dealing with fibrous, membrane, and water-soluble globular proteins, in both their native and denatured states. The book systematically summarizes and presents the results of several decades of worldwide fundamental research on protein physics, structure, and folding, describing many physical models that help readers make estimates and predictions of physical processes that occur in proteins. New to this revised edition is the inclusion of novel information on amyloid aggregation, natively disordered proteins, protein folding in vivo, protein motors, misfolding, chameleon proteins, advances in protein engineering & design, and advances in the modeling of protein folding. Further, the book provides problems with solutions, many new and updated references, and physical and mathematical appendices. In addition, new figures (including stereo drawings, with a special appendix showing how to use them) are added, making this an ideal resource for graduate and advanced undergraduate students and researchers in academia in the fields of biophysics, physics, biochemistry, biologists, biotechnology, and chemistry. Fully revised and expanded new edition based on the latest research developments in protein physics Written by the world's top expert in the field Deals with fibrous, membrane, and water-soluble globular proteins, in both their native and denatured states Summarizes, in a systematic form, the results of several decades of worldwide fundamental research on protein physics and their structure and folding Examines experimental data on protein structure in the post-genome era

Principles of Protein Structure

Author: G.E. Schulz
Publisher: Springer Science & Business Media
ISBN: 1461261376
Format: PDF
Download Now
New textbooks at all levels of chemistry appear with great regularity. Some fields like basic biochemistry, organic reaction mechanisms, and chemical thermodynamics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the graduate level, suffer from a real lack of up-to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research which is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive introductions to their fields. These should serve the needs of one semester or one quarter graduate courses in chemistry and biochemistry. In some cases the availability of texts in active research areas should help stimulate the creation of new courses.

Protein Actions Principles and Modeling

Author: Ivet Bahar
Publisher: Garland Science
ISBN: 1351815016
Format: PDF, Docs
Download Now
Protein Actions: Principles and Modeling is aimed at graduates, advanced undergraduates, and any professional who seeks an introduction to the biological, chemical, and physical properties of proteins. Broadly accessible to biophysicists and biochemists, it will be particularly useful to student and professional structural biologists and molecular biophysicists, bioinformaticians and computational biologists, biological chemists (particularly drug designers) and molecular bioengineers. The book begins by introducing the basic principles of protein structure and function. Some readers will be familiar with aspects of this, but the authors build up a more quantitative approach than their competitors. Emphasizing concepts and theory rather than experimental techniques, the book shows how proteins can be analyzed using the disciplines of elementary statistical mechanics, energetics, and kinetics. These chapters illuminate how proteins attain biologically active states and the properties of those states. The book ends with a synopsis the roles of computational biology and bioinformatics in protein science.

Green Tribology

Author: Michael Nosonovsky
Publisher: Springer Science & Business Media
ISBN: 3642236812
Format: PDF, Mobi
Download Now
Tribology is the study of friction, wear and lubrication. Recently, the concept of “green tribology” as “the science and technology of the tribological aspects of ecological balance and of environmental and biological impacts” was introduced. The field of green tribology includes tribological technology that mimics living nature (biomimetic surfaces) and thus is expected to be environmentally friendly, the control of friction and wear that is of importance for energy conservation and conversion, environmental aspects of lubrication and surface modification techniques, and tribological aspects of green applications such as wind-power turbines or solar panels. This book is the first comprehensive volume on green tribology. The chapters are prepared by leading experts in their fields and cover such topics as biomimetics, environmentally friendly lubrication, tribology of wind turbines and renewable sources of energy, and ecological impact of new technologies of surface treatment.