Introduction to Spectral Theory in Hilbert Space

Author: Gilbert Helmberg
Publisher: Elsevier
ISBN: 1483164179
Format: PDF, Kindle
Download Now
North-Holland Series in Applied Mathematics and Mechanics, Volume 6: Introduction to Spectral Theory in Hilbert Space focuses on the mechanics, principles, and approaches involved in spectral theory in Hilbert space. The publication first elaborates on the concept and specific geometry of Hilbert space and bounded linear operators. Discussions focus on projection and adjoint operators, bilinear forms, bounded linear mappings, isomorphisms, orthogonal subspaces, base, subspaces, finite dimensional Euclidean space, and normed linear spaces. The text then takes a look at the general theory of linear operators and spectral analysis of compact linear operators, including spectral decomposition of a compact selfadjoint operator, weakly convergent sequences, spectrum of a compact linear operator, and eigenvalues of a linear operator. The manuscript ponders on the spectral analysis of bounded linear operators and unbounded selfadjoint operators. Topics include spectral decomposition of an unbounded selfadjoint operator and bounded normal operator, functions of a unitary operator, step functions of a bounded selfadjoint operator, polynomials in a bounded operator, and order relation for bounded selfadjoint operators. The publication is a valuable source of data for mathematicians and researchers interested in spectral theory in Hilbert space.

Introduction to Spectral Theory in Hilbert Space

Author: Gilbert Helmberg
Publisher: Courier Dover Publications
ISBN: 0486466221
Format: PDF, Docs
Download Now
This text introduces students to Hilbert space and bounded self-adjoint operators, as well as the spectrum of an operator and its spectral decomposition. The author, Emeritus Professor of Mathematics at the University of Innsbruck, Austria, has ensured that the treatment is accessible to readers with no further background than a familiarity with analysis and analytic geometry. Starting with a definition of Hilbert space and its geometry, the text explores the general theory of bounded linear operators, the spectral analysis of compact linear operators, and unbounded self-adjoint operators. Extensive appendixes offer supplemental information on the graph of a linear operator and the Riemann-Stieltjes and Lebesgue integration.

Harmonic Analysis Smooth and Non smooth

Author: Palle E.T. Jorgensen
Publisher: American Mathematical Soc.
ISBN: 1470448807
Format: PDF, ePub
Download Now
There is a recent and increasing interest in harmonic analysis of non-smooth geometries. Real-world examples where these types of geometry appear include large computer networks, relationships in datasets, and fractal structures such as those found in crystalline substances, light scattering, and other natural phenomena where dynamical systems are present. Notions of harmonic analysis focus on transforms and expansions and involve dual variables. In this book on smooth and non-smooth harmonic analysis, the notion of dual variables will be adapted to fractals. In addition to harmonic analysis via Fourier duality, the author also covers multiresolution wavelet approaches as well as a third tool, namely, L2 spaces derived from appropriate Gaussian processes. The book is based on a series of ten lectures delivered in June 2018 at a CBMS conference held at Iowa State University.

Functional Analysis and Applications

Author: Abul Hasan Siddiqi
Publisher: Springer
ISBN: 9811037256
Format: PDF, ePub, Mobi
Download Now
This self-contained textbook discusses all major topics in functional analysis. Combining classical materials with new methods, it supplies numerous relevant solved examples and problems and discusses the applications of functional analysis in diverse fields. The book is unique in its scope, and a variety of applications of functional analysis and operator-theoretic methods are devoted to each area of application. Each chapter includes a set of problems, some of which are routine and elementary, and some of which are more advanced. The book is primarily intended as a textbook for graduate and advanced undergraduate students in applied mathematics and engineering. It offers several attractive features making it ideally suited for courses on functional analysis intended to provide a basic introduction to the subject and the impact of functional analysis on applied and computational mathematics, nonlinear functional analysis and optimization. It introduces emerging topics like wavelets, Gabor system, inverse problems and application to signal and image processing.