Introduction to Spintronics Second Edition

Author: Supriyo Bandyopadhyay
Publisher: CRC Press
ISBN: 148225557X
Format: PDF, ePub, Docs
Download Now
Introduction to Spintronics provides an accessible, organized, and progressive presentation of the quantum mechanical concept of spin and the technology of using it to store, process, and communicate information. Fully updated and expanded to 18 chapters, this Second Edition: Reflects the explosion of study in spin-related physics, addressing seven important physical phenomena with spintronic device applications Discusses the recently discovered field of spintronics without magnetism, which allows one to manipulate spin currents by purely electrical means Explores lateral spin-orbit interaction and its many nuances, as well as the possibility to implement spin polarizers and analyzers using quantum point contacts Introduces the concept of single-domain-nanomagnet-based computing, an ultra-energy-efficient approach to compute and store information using nanomagnets, offering a practical rendition of single-spin logic architecture ideas and an alternative to transistor-based computing hardware Features many new drill problems, and includes a solution manual and figure slides with qualifying course adoption Still the only known spintronics textbook written in English, Introduction to Spintronics, Second Edition is a must read for those interested in the science and technology of storing, processing, and communicating information via the spin degree of freedom of electrons.

Introduction to Spintronics

Author: Supriyo Bandyopadhyay
Publisher: CRC Press
ISBN: 1420004743
Format: PDF
Download Now
Using spin to replace or augment the role of charge in signal processing devices, computing systems and circuits may improve speed, power consumption, and device density in some cases—making the study of spinone of the fastest-growing areas in micro- and nanoelectronics. With most of the literature on the subject still highly advanced and heavily theoretical, the demand for a practical introduction to the concepts relating to spin has only now been filled. Explains effects such as giant magnetoresistance, the subject of the 2007 Nobel Prize in physics Introduction to Spintronics is an accessible, organized, and progressive presentation of the quantum mechanical concept of spin. The authors build a foundation of principles and equations underlying the physics, transport, and dynamics of spin in solid state systems. They explain the use of spin for encoding qubits in quantum logic processors; clarify how spin-orbit interaction forms the basis for certain spin-based devices such as spintronic field effect transistors; and discuss the effects of magnetic fields on spin-based device performance. Covers active hybrid spintronic devices, monolithic spintronic devices, passive spintronic devices, and devices based on the giant magnetoresistance effect The final chapters introduce the burgeoning field of spin-based reversible logic gates, spintronic embodiments of quantum computers, and other topics in quantum mechanics that have applications in spintronics. An Introduction to Spintronics provides the knowledge and understanding of the field needed to conduct independent research in spintronics.

Introduction to Spintronics Second Edition

Author: Supriyo Bandyopadhyay
Publisher: CRC Press
ISBN: 9781482255560
Format: PDF
Download Now
Introduction to Spintronics provides an accessible, organized, and progressive presentation of the quantum mechanical concept of spin and the technology of using it to store, process, and communicate information. Fully updated and expanded to 18 chapters, this Second Edition: Reflects the explosion of study in spin-related physics, addressing seven important physical phenomena with spintronic device applications Discusses the recently discovered field of spintronics without magnetism, which allows one to manipulate spin currents by purely electrical means Explores lateral spin-orbit interaction and its many nuances, as well as the possibility to implement spin polarizers and analyzers using quantum point contacts Introduces the concept of single-domain-nanomagnet-based computing, an ultra-energy-efficient approach to compute and store information using nanomagnets, offering a practical rendition of single-spin logic architecture ideas and an alternative to transistor-based computing hardware Features many new drill problems, and includes a solution manual and figure slides with qualifying course adoption Still the only known spintronics textbook written in English, Introduction to Spintronics, Second Edition is a must read for those interested in the science and technology of storing, processing, and communicating information via the spin degree of freedom of electrons.

Spintronics based Computing

Author: Weisheng Zhao
Publisher: Springer
ISBN: 3319151800
Format: PDF, ePub
Download Now
This book provides a comprehensive introduction to spintronics-based computing for the next generation of ultra-low power/highly reliable logic. It will cover aspects from device to system-level, including magnetic memory cells, device modeling, hybrid circuit structure, design methodology, CAD tools, and technological integration methods. This book is accessible to a variety of readers and little or no background in magnetism and spin electronics are required to understand its content. The multidisciplinary team of expert authors from circuits, devices, computer architecture, CAD and system design reveal to readers the potential of spintronics nanodevices to reduce power consumption, improve reliability and enable new functionality.

Nanomagnetism and Spintronics

Author: Teruya Shinjo
Publisher: Elsevier
ISBN: 0444632778
Format: PDF, Kindle
Download Now
The concise and accessible chapters of Nanomagnetism and Spintronics, Second Edition, cover the most recent research in areas of spin-current generation, spin-calorimetric effect, voltage effects on magnetic properties, spin-injection phenomena, giant magnetoresistance (GMR), and tunnel magnetoresistance (TMR). Spintronics is a cutting-edge area in the field of magnetism that studies the interplay of magnetism and transport phenomena, demonstrating how electrons not only have charge but also spin. This second edition provides the background to understand this novel physical phenomenon and focuses on the most recent developments and research relating to spintronics. This exciting new edition is an essential resource for graduate students, researchers, and professionals in industry who want to understand the concepts of spintronics, and keep up with recent research, all in one volume. Provides a concise, thorough evaluation of current research Surveys the important findings up to 2012 Examines the future of devices and the importance of spin current

Spintronics for Next Generation Innovative Devices

Author: Katsuaki Sato
Publisher: John Wiley & Sons
ISBN: 1118751787
Format: PDF, ePub, Mobi
Download Now
Spintronics (short for spin electronics, or spin transport electronics) exploits both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. Controlling the spin of electrons within a device can produce surprising and substantial changes in its properties. Drawing from many cutting edge fields, including physics, materials science, and electronics device technology, spintronics has provided the key concepts for many next generation information processing and transmitting technologies. This book discusses all aspects of spintronics from basic science to applications and covers: • magnetic semiconductors • topological insulators • spin current science • spin caloritronics • ultrafast magnetization reversal • magneto-resistance effects and devices • spin transistors • quantum information devices This book provides a comprehensive introduction to Spintronics for researchers and students in academia and industry.

Semiconductor Spintronics

Author: Jianbai Xia
Publisher: World Scientific
ISBN: 9814327905
Format: PDF, Docs
Download Now
Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results. This monograph summarizes the physical foundation and the experimental results obtained in this field.

Semiconductor Spintronics

Author: Thomas Schäpers
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110425440
Format: PDF, ePub
Download Now
As the first comprehensive introduction into the rapidly evolving field of spintronics, this textbook covers ferromagnetism in nano-electrodes, spin injection, spin manipulation, and the practical use of these effects in next-generation electronics. Based on foundations in quantum mechanics and solid state physics this textbook guides the reader to the forefront of research and development in the field.

Molecular Spintronics

Author: Marta Galbiati
Publisher: Springer
ISBN: 3319226118
Format: PDF, Kindle
Download Now
This thesis targets molecular or organic spintronics and more particularly the spin polarization tailoring opportunities that arise from the ferromagnetic metal/molecule hybridization at interfaces: the new concept of spinterface. Molecular or organic spintronics is an emerging research field at the frontier between organic chemistry and spintronics. The manuscript is divided into three parts, the first of which introduces the basic concepts of spintronics and advantages that molecules can bring to this field. The state of the art on organic and molecular spintronics is also presented, with a special emphasis on the physics and experimental evidence for spinterfaces. The book’s second and third parts are dedicated to the two main experimental topics investigated in the thesis: Self-Assembled Monolayers (SAMs) and Organic Semiconductors (OSCs). The study of SAMs-based magnetic tunnel nanojunctions reveals the potential to modulate the properties of such devices “at will,” since each part of the molecule can be tuned independently like a “LEGO” building block. The study of Alq3-based spin valves reveals magnetoresistance effects at room temperature and is aimed at understanding the respective roles played by the two interfaces. Through the development of these systems, we demonstrate their potential for spintronics and provide a solid foundation for spin polarization engineering at the molecular level.