Introduction to Tensor Products of Banach Spaces

Author: Raymond A. Ryan
Publisher: Springer Science & Business Media
ISBN: 1447139038
Format: PDF
Download Now
This is the first ever truly introductory text to the theory of tensor products of Banach spaces. Coverage includes a full treatment of the Grothendieck theory of tensor norms, approximation property and the Radon-Nikodym Property, Bochner and Pettis integrals. Each chapter contains worked examples and a set of exercises, and two appendices offer material on summability in Banach spaces and properties of spaces of measures.

Tensor Spaces and Numerical Tensor Calculus

Author: Wolfgang Hackbusch
Publisher: Springer Science & Business Media
ISBN: 3642280277
Format: PDF, Mobi
Download Now
Special numerical techniques are already needed to deal with nxn matrices for large n.Tensor data are of size nxnx...xn=n^d, where n^d exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. The monograph describes the methods how tensors can be practically treated and how numerical operations can be performed. Applications are problems from quantum chemistry, approximation of multivariate functions, solution of pde, e.g., with stochastic coefficients, etc. ​

Topological Vector Spaces and Distributions

Author: John Horvath
Publisher: Courier Corporation
ISBN: 0486311031
Format: PDF
Download Now
"The most readable introduction to the theory of vector spaces available in English and possibly any other language."—J. L. B. Cooper, MathSciNet Review Mathematically rigorous but user-friendly, this classic treatise discusses major modern contributions to the field of topological vector spaces. The self-contained treatment includes complete proofs for all necessary results from algebra and topology. Suitable for undergraduate mathematics majors with a background in advanced calculus, this volume will also assist professional mathematicians, physicists, and engineers. The precise exposition of the first three chapters—covering Banach spaces, locally convex spaces, and duality—provides an excellent summary of the modern theory of locally convex spaces. The fourth and final chapter develops the theory of distributions in relation to convolutions, tensor products, and Fourier transforms. Augmented with many examples and exercises, the text includes an extensive bibliography.

A Short Course on Spectral Theory

Author: William Arveson
Publisher: Springer Science & Business Media
ISBN: 0387215182
Format: PDF, ePub
Download Now
This book presents the basic tools of modern analysis within the context of the fundamental problem of operator theory: to calculate spectra of specific operators on infinite dimensional spaces, especially operators on Hilbert spaces. The tools are diverse, and they provide the basis for more refined methods that allow one to approach problems that go well beyond the computation of spectra: the mathematical foundations of quantum physics, noncommutative K-theory, and the classification of simple C*-algebras being three areas of current research activity which require mastery of the material presented here.

Banach Space Theory

Author: Marián Fabian
Publisher: Springer Science & Business Media
ISBN: 9781441975157
Format: PDF, Docs
Download Now
Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization and other branches of mathematics. This book introduces the reader to linear functional analysis and to related parts of infinite-dimensional Banach space theory. Key Features: - Develops classical theory, including weak topologies, locally convex space, Schauder bases and compact operator theory - Covers Radon-Nikodým property, finite-dimensional spaces and local theory on tensor products - Contains sections on uniform homeomorphisms and non-linear theory, Rosenthal's L1 theorem, fixed points, and more - Includes information about further topics and directions of research and some open problems at the end of each chapter - Provides numerous exercises for practice The text is suitable for graduate courses or for independent study. Prerequisites include basic courses in calculus and linear. Researchers in functional analysis will also benefit for this book as it can serve as a reference book.

Banach Algebra Techniques in Operator Theory

Author: Ronald G. Douglas
Publisher: Springer Science & Business Media
ISBN: 1461216567
Format: PDF, Docs
Download Now
A discussion of certain advanced topics in operator theory, providing the necessary background while assuming only standard senior-first year graduate courses in general topology, measure theory, and algebra. Each chapter ends with source notes which suggest additional reading along with comments on who proved what and when, followed by a large number of problems of varying difficulty. This new edition will appeal to a whole new generation of students seeking an introduction to this topic.

The Metric Theory of Tensor Products

Author: Joseph Diestel
Publisher: American Mathematical Soc.
ISBN: 9780821872697
Format: PDF
Download Now
Famed mathematician Alexander Grothendieck, in his Resume, set forth his plan for the study of the finer structure of Banach spaces. He used tensor products as a foundation upon which he built the classes of operators most important to the study of Banach spaces and established the importance of the "local" theory in the study of these operators and the spaces they act upon. When Lintenstrauss and Pelczynski addressed his work at the rebirth of Banach space theory, they shed his Fundamental Inequality in the trappings of operator ideals by shedding the tensorial formulation. The authors of this book, however, feel that there is much of value in Grothendieck's original formulations in the Resume and here endeavor to "expose the Resume" by presenting most of Grothendieck's arguments using the mathematical tools that were available to him at the time.

Analysis and Design of Descriptor Linear Systems

Author: Guang-Ren Duan
Publisher: Springer Science & Business Media
ISBN: 9781441963970
Format: PDF
Download Now
Descriptor linear systems theory is an important part in the general field of control systems theory, and has attracted much attention in the last two decades. In spite of the fact that descriptor linear systems theory has been a topic very rich in content, there have been only a few books on this topic. This book provides a systematic introduction to the theory of continuous-time descriptor linear systems and aims to provide a relatively systematic introduction to the basic results in descriptor linear systems theory. The clear representation of materials and a large number of examples make this book easy to understand by a large audience. General readers will find in this book a comprehensive introduction to the theory of descriptive linear systems. Researchers will find a comprehensive description of the most recent results in this theory and students will find a good introduction to some important problems in linear systems theory.

Separably Injective Banach Spaces

Author: Antonio Avilés
Publisher: Springer
ISBN: 3319147412
Format: PDF, ePub, Docs
Download Now
This monograph contains a detailed exposition of the up-to-date theory of separably injective spaces: new and old results are put into perspective with concrete examples (such as l∞/c0 and C(K) spaces, where K is a finite height compact space or an F-space, ultrapowers of L∞ spaces and spaces of universal disposition). It is no exaggeration to say that the theory of separably injective Banach spaces is strikingly different from that of injective spaces. For instance, separably injective Banach spaces are not necessarily isometric to, or complemented subspaces of, spaces of continuous functions on a compact space. Moreover, in contrast to the scarcity of examples and general results concerning injective spaces, we know of many different types of separably injective spaces and there is a rich theory around them. The monograph is completed with a preparatory chapter on injective spaces, a chapter on higher cardinal versions of separable injectivity and a lively discussion of open problems and further lines of research.

Higher Moments of Banach Space Valued Random Variables

Author: Svante Janson
Publisher: American Mathematical Soc.
ISBN: 1470414651
Format: PDF, ePub, Mobi
Download Now
The authors define the :th moment of a Banach space valued random variable as the expectation of its :th tensor power; thus the moment (if it exists) is an element of a tensor power of the original Banach space. The authors study both the projective and injective tensor products, and their relation. Moreover, in order to be general and flexible, we study three different types of expectations: Bochner integrals, Pettis integrals and Dunford integrals.