Riemannian Manifolds

Author: John M. Lee
Publisher: Springer Science & Business Media
ISBN: 0387227261
Format: PDF, Kindle
Download Now
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

An Introduction to Algebraic Topology

Author: Joseph J. Rotman
Publisher: Springer Science & Business Media
ISBN: 9780387966786
Format: PDF, Docs
Download Now
This book offers a detailed exposition, with exercises, of the basic ideas of algebraic topology: homology, homotopy groups, and cohomology rings. Avoiding excessive generality, the author explains the origins of abstract concepts as they are introduced.

Introduction to 3 Manifolds

Author: Jennifer Schultens
Publisher: American Mathematical Soc.
ISBN: 1470410206
Format: PDF, ePub, Mobi
Download Now
This book grew out of a graduate course on 3-manifolds and is intended for a mathematically experienced audience that is new to low-dimensional topology. The exposition begins with the definition of a manifold, explores possible additional structures on manifolds, discusses the classification of surfaces, introduces key foundational results for 3-manifolds, and provides an overview of knot theory. It then continues with more specialized topics by briefly considering triangulations of 3-manifolds, normal surface theory, and Heegaard splittings. The book finishes with a discussion of topics relevant to viewing 3-manifolds via the curve complex. With about 250 figures and more than 200 exercises, this book can serve as an excellent overview and starting point for the study of 3-manifolds.

Algebraic Surfaces and Holomorphic Vector Bundles

Author: Robert Friedman
Publisher: Springer Science & Business Media
ISBN: 1461216885
Format: PDF, ePub, Mobi
Download Now
A novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself applied to study canonical embeddings of surfaces via Reider's method. Similarly, ruled and elliptic surfaces are discussed in detail, before the geometry of vector bundles over such surfaces is analysed. Many of the results on vector bundles appear for the first time in book form, backed by many examples, both of surfaces and vector bundles, and over 100 exercises forming an integral part of the text. Aimed at graduates with a thorough first-year course in algebraic geometry, as well as more advanced students and researchers in the areas of algebraic geometry, gauge theory, or 4-manifold topology, many of the results on vector bundles will also be of interest to physicists studying string theory.

An Introduction to Riemannian Geometry

Author: Leonor Godinho
Publisher: Springer
ISBN: 3319086669
Format: PDF, Mobi
Download Now
Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

An Introduction To Chaotic Dynamical Systems

Author: Robert Devaney
Publisher: CRC Press
ISBN: 0429981937
Format: PDF, Kindle
Download Now
The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.

Iteration of Rational Functions

Author: Alan F. Beardon
Publisher: Springer Science & Business Media
ISBN: 9780387951515
Format: PDF
Download Now
This book makes available a comprehensive, detailed, and organized treatment of the foundations of the theory of iteration of rational functions of a complex variable. The material covered extends from the original memoirs of Fatou and Julia to the recent and important results and methods of Sullivan and Shishikura. Many of the details of the proofs have not occurred in print before. The theory of of dynamical systems and chaos has recently undergone a rapid growth in popularity, in part due to the spectacular computer graphics of Julia sets, fractals, and the Mandelbrot set. This text focuses on the specialized area of complex analytic dynamics, a subject that dates back to 1916 and is currently a very active area in mathematics.

An Introduction to Differential Manifolds

Author: Dennis Barden
Publisher:
ISBN: 9781860943553
Format: PDF, ePub, Docs
Download Now
This invaluable book, based on the many years of teaching experience of both authors, introduces the reader to the basic ideas in differential topology. Among the topics covered are smooth manifolds and maps, the structure of the tangent bundle and its associates, the calculation of real cohomology groups using differential forms (de Rham theory), and applications such as the Poincare-Hopf theorem relating the Euler number of a manifold and the index of a vector field. Each chapter contains exercises of varying difficulty for which solutions are provided. Special features include examples drawn from geometric manifolds in dimension 3 and Brieskom varieties in dimensions 5 and 7, as well as detailed calculations for the cohomology groups of spheres and tori. Readership: Upper level undergraduates, beginning graduate students, and lecturers in geometry and topology.

Mathematical Methods in Economics and Social Choice

Author: norman schofield
Publisher: Springer Science & Business Media
ISBN: 3642398189
Format: PDF, Docs
Download Now
In recent years, the usual optimization techniques, which have proved so useful in microeconomic theory, have been extended to incorporate more powerful topological and differential methods, and these methods have led to new results on the qualitative behavior of general economic and political systems. These developments have necessarily resulted in an increase in the degree of formalism in the publications in the academic journals. This formalism can often deter graduate students. The progression of ideas presented in this book will familiarize the student with the geometric concepts underlying these topological methods, and, as a result, make mathematical economics, general equilibrium theory, and social choice theory more accessible.

Introduction to Smooth Manifolds

Author: John M. Lee
Publisher: Springer Science & Business Media
ISBN: 0387217525
Format: PDF, ePub, Mobi
Download Now
Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why