Introductory Analysis

Author: Richard J. Bagby
Publisher: Elsevier
ISBN: 008054942X
Format: PDF, ePub, Docs
Download Now
Introductory Analysis addresses the needs of students taking a course in analysis after completing a semester or two of calculus, and offers an alternative to texts that assume that math majors are their only audience. By using a conversational style that does not compromise mathematical precision, the author explains the material in terms that help the reader gain a firmer grasp of calculus concepts. * Written in an engaging, conversational tone and readable style while softening the rigor and theory * Takes a realistic approach to the necessary and accessible level of abstraction for the secondary education students * A thorough concentration of basic topics of calculus * Features a student-friendly introduction to delta-epsilon arguments * Includes a limited use of abstract generalizations for easy use * Covers natural logarithms and exponential functions * Provides the computational techniques often encountered in basic calculus

Elementary Analysis

Author: Kenneth A. Ross
Publisher: Springer Science & Business Media
ISBN: 1461462711
Format: PDF, ePub, Docs
Download Now
For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

Elements of Real Analysis

Author: Charles G. Denlinger
Publisher: Jones & Bartlett Publishers
ISBN: 1449636187
Format: PDF, ePub, Mobi
Download Now
Elementary Real Analysis is a core course in nearly all mathematics departments throughout the world. It enables students to develop a deep understanding of the key concepts of calculus from a mature perspective. Elements of Real Analysis is a student-friendly guide to learning all the important ideas of elementary real analysis, based on the author's many years of experience teaching the subject to typical undergraduate mathematics majors. It avoids the compact style of professional mathematics writing, in favor of a style that feels more comfortable to students encountering the subject for the first time. It presents topics in ways that are most easily understood, yet does not sacrifice rigor or coverage. In using this book, students discover that real analysis is completely deducible from the axioms of the real number system. They learn the powerful techniques of limits of sequences as the primary entry to the concepts of analysis, and see the ubiquitous role sequences play in virtually all later topics. They become comfortable with topological ideas, and see how these concepts help unify the subject. Students encounter many interesting examples, including "pathological" ones, that motivate the subject and help fix the concepts. They develop a unified understanding of limits, continuity, differentiability, Riemann integrability, and infinite series of numbers and functions.

Yet Another Introduction to Analysis

Author: Victor Bryant
Publisher: Cambridge University Press
ISBN: 1107717221
Format: PDF, ePub
Download Now
Mathematics education in schools has seen a revolution in recent years. Students everywhere expect the subject to be well-motivated, relevant and practical. When such students reach higher education the traditional development of analysis, often rather divorced from the calculus which they learnt at school, seems highly inappropriate. Shouldn't every step in a first course in analysis arise naturally from the student's experience of functions and calculus at school? And shouldn't such a course take every opportunity to endorse and extend the student's basic knowledge of functions? In Yet Another Introduction to Analysis the author steers a simple and well-motivated path through the central ideas of real analysis. Each concept is introduced only after its need has become clear and after it has already been used informally. Wherever appropriate the new ideas are related to school topics and are used to extend the reader's understanding of those topics. A first course in analysis at college is always regarded as one of the hardest in the curriculum. However, in this book the reader is led carefully through every step in such a way that he/she will soon be predicting the next step for him/herself. In this way the subject is developed naturally: students will end up not only understanding analysis, but also enjoying it.

Introduction to Calculus and Analysis

Author: Richard Courant
Publisher: Springer Science & Business Media
ISBN: 9783540665694
Format: PDF, Docs
Download Now
Biography of Richard Courant Richard Courant was born in 1888 in a small town of what is now Poland, and died in New Rochelle, N.Y. in 1972. He received his doctorate from the legendary David Hilbert in Göttingen, where later he founded and directed its famed mathematics Institute, a Mecca for mathematicians in the twenties. In 1933 the Nazi government dismissed Courant for being Jewish, and he emigrated to the United States. He found, in New York, what he called "a reservoir of talent" to be tapped. He built, at New York University, a new mathematical Sciences Institute that shares the philosophy of its illustrious predecessor and rivals it in worldwide influence. For Courant mathematics was an adventure, with applications forming a vital part. This spirit is reflected in his books, in particular in his influential calculus text, revised in collaboration with his brilliant younger colleague, Fritz John. (P.D. Lax) Biography of Fritz John Fritz John was born on June 14, 1910, in Berlin. After his school years in Danzig (now Gdansk, Poland), he studied in Göttingen and received his doctorate in 1933, just when the Nazi regime came to power. As he was half-Jewish and his bride Aryan, he had to flee Germany in 1934. After a year in Cambridge, UK, he accepted a position at the University of Kentucky, and in 1946 joined Courant, Friedrichs and Stoker in building up New York University the institute that later became the Courant Institute of Mathematical Sciences. He remained there until his death in New Rochelle on February 10, 1994. John's research and the books he wrote had a strong impact on the development of many fields of mathematics, foremost in partial differential equations. He also worked on Radon transforms, illposed problems, convex geometry, numerical analysis, elasticity theory. In connection with his work in latter field, he and Nirenberg introduced the space of the BMO-functions (bounded mean oscillations). Fritz John's work exemplifies the unity of mathematics as well as its elegance and its beauty. (J. Moser)

Elementary Stochastic Calculus with Finance in View

Author: Thomas Mikosch
Publisher: World Scientific
ISBN: 9789810235437
Format: PDF, Kindle
Download Now
Modelling with the Ito integral or stochastic differential equations has become increasingly important in various applied fields, including physics, biology, chemistry and finance. However, stochastic calculus is based on a deep mathematical theory. This book is suitable for the reader without a deep mathematical background. It gives an elementary introduction to that area of probability theory, without burdening the reader with a great deal of measure theory. Applications are taken from stochastic finance. In particular, the Black -- Scholes option pricing formula is derived. The book can serve as a text for a course on stochastic calculus for non-mathematicians or as elementary reading material for anyone who wants to learn about Ito calculus and/or stochastic finance.

Introductory Real Analysis

Author: A. N. Kolmogorov
Publisher: Courier Corporation
ISBN: 0486134741
Format: PDF, Docs
Download Now
Comprehensive, elementary introduction to real and functional analysis covers basic concepts and introductory principles in set theory, metric spaces, topological and linear spaces, linear functionals and linear operators, more. 1970 edition.

CounterExamples

Author: Andrei Bourchtein
Publisher: CRC Press
ISBN: 1482246678
Format: PDF, Docs
Download Now
This book provides a one-semester undergraduate introduction to counterexamples in calculus and analysis. It helps engineering, natural sciences, and mathematics students tackle commonly made erroneous conjectures. The book encourages students to think critically and analytically, and helps to reveal common errors in many examples. In this book, the authors present an overview of important concepts and results in calculus and real analysis by considering false statements, which may appear to be true at first glance. The book covers topics concerning the functions of real variables, starting with elementary properties, moving to limits and continuity, and then to differentiation and integration. The first part of the book describes single-variable functions, while the second part covers the functions of two variables. The many examples presented throughout the book typically start at a very basic level and become more complex during the development of exposition. At the end of each chapter, supplementary exercises of different levels of complexity are provided, the most difficult of them with a hint to the solution. This book is intended for students who are interested in developing a deeper understanding of the topics of calculus. The gathered counterexamples may also be used by calculus instructors in their classes.

What is Calculus

Author: R Michael Range
Publisher: World Scientific Publishing Company
ISBN: 9814644501
Format: PDF, Docs
Download Now
This unique book provides a new and well-motivated introduction to calculus and analysis, historically significant fundamental areas of mathematics that are widely used in many disciplines. It begins with familiar elementary high school geometry and algebra, and develops important concepts such as tangents and derivatives without using any advanced tools based on limits and infinite processes that dominate the traditional introductions to the subject. This simple algebraic method is a modern version of an idea that goes back to René Descartes and that has been largely forgotten. Moving beyond algebra, the need for new analytic concepts based on completeness, continuity, and limits becomes clearly visible to the reader while investigating exponential functions. The author carefully develops the necessary foundations while minimizing the use of technical language. He expertly guides the reader to deep fundamental analysis results, including completeness, key differential equations, definite integrals, Taylor series for standard functions, and the Euler identity. This pioneering book takes the sophisticated reader from simple familiar algebra to the heart of analysis. Furthermore, it should be of interest as a source of new ideas and as supplementary reading for high school teachers, and for students and instructors of calculus and analysis.