Isosurfaces

Author: Rephael Wenger
Publisher: CRC Press
ISBN: 1466571020
Format: PDF, Mobi
Download Now
Ever since Lorensen and Cline published their paper on the Marching Cubes algorithm, isosurfaces have been a standard technique for the visualization of 3D volumetric data. Yet there is no book exclusively devoted to isosurfaces. Isosurfaces: Geometry, Topology, and Algorithms represents the first book to focus on basic algorithms for isosurface construction. It also gives a rigorous mathematical perspective on some of the algorithms and results. In color throughout, the book covers the Marching Cubes algorithm and variants, dual contouring algorithms, multilinear interpolation, multiresolution isosurface extraction, isosurfaces in four dimensions, interval volumes, and contour trees. It also describes data structures for faster isosurface extraction as well as methods for selecting significant isovalues. For designers of visualization software, the book presents an organized overview of the various algorithms associated with isosurfaces. For graduate students, it provides a solid introduction to research in this area. For visualization researchers, the book serves as a reference to the vast literature on isosurfaces.

Computational Science and Its Applications ICCSA 2014

Author: Beniamino Murgante
Publisher: Springer
ISBN: 3319091298
Format: PDF, Docs
Download Now
The six-volume set LNCS 8579-8584 constitutes the refereed proceedings of the 14th International Conference on Computational Science and Its Applications, ICCSA 2014, held in Guimarães, Portugal, in June/July 2014. The 347 revised papers presented in 30 workshops and a special track were carefully reviewed and selected from 1167. The 289 papers presented in the workshops cover various areas in computational science ranging from computational science technologies to specific areas of computational science such as computational geometry and security.

An Introduction to Verification of Visualization Techniques

Author: Tiago Etiene
Publisher: Morgan & Claypool Publishers
ISBN: 1627058346
Format: PDF
Download Now
As we increase our reliance on computer-generated information, often using it as part of our decision-making process, we must devise tools to assess the correctness of that information. Consider, for example, software embedded on vehicles, used for simulating aircraft performance, or used in medical imaging. In those cases, software correctness is of paramount importance as there's little room for error. Software verification is one of the tools available to attain such goals. Verification is a well known and widely studied subfield of computer science and computational science and the goal is to help us increase confidence in the software implementation by verifying that the software does what it is supposed to do. The goal of this book is to introduce the reader to software verification in the context of visualization. In the same way we became more dependent on commercial software, we have also increased our reliance on visualization software. The reason is simple: visualization is the lens through which users can understand complex data, and as such it must be verified. The explosion in our ability to amass data requires tools not only to store and analyze data, but also to visualize it. This book is comprised of six chapters. After an introduction to the goals of the book, we present a brief description of both worlds of visualization (Chapter 2) and verification (Chapter 3). We then proceed to illustrate the main steps of the verification pipeline for visualization algorithms. We focus on two classic volume visualization techniques, namely, Isosurface Extraction (Chapter 4) and Direct Volume Rendering (Chapter 5). We explain how to verify implementations of those techniques and report the latest results in the field of verification of visualization techniques. The last chapter concludes the book and highlights new research topics for the future.

Discrete Geometry for Computer Imagery

Author: David Coeurjolly
Publisher: Springer
ISBN: 3540791264
Format: PDF, ePub
Download Now
This book constitutes the refereed proceedings of the 14th IAPR TC-18 International Conference on Discrete Geometry for Computer Imagery, DGCI 2008, held in Lyon, France, in April 2008.

Topological Methods in Data Analysis and Visualization

Author: Valerio Pascucci
Publisher: Springer Science & Business Media
ISBN: 9783642150142
Format: PDF, ePub, Docs
Download Now
Topology-based methods are of increasing importance in the analysis and visualization of datasets from a wide variety of scientific domains such as biology, physics, engineering, and medicine. Current challenges of topology-based techniques include the management of time-dependent data, the representation of large and complex datasets, the characterization of noise and uncertainty, the effective integration of numerical methods with robust combinatorial algorithms, etc. . The editors have brought together the most prominent and best recognized researchers in the field of topology-based data analysis and visualization for a joint discussion and scientific exchange of the latest results in the field. This book contains the best 20 peer-reviewed papers resulting from the discussions and presentations at the third workshop on "Topological Methods in Data Analysis and Visualization", held 2009 in Snowbird, Utah, US. The 2009 "TopoInVis" workshop follows the two successful workshops in 2005 (Slovakia) and 2007 (Germany).

Mathematical Foundations of Scientific Visualization Computer Graphics and Massive Data Exploration

Author: Torsten Möller
Publisher: Springer Science & Business Media
ISBN: 3540499261
Format: PDF, ePub, Docs
Download Now
The goal of visualization is the accurate, interactive, and intuitive presentation of data. Complex numerical simulations, high-resolution imaging devices and incre- ingly common environment-embedded sensors are the primary generators of m- sive data sets. Being able to derive scienti?c insight from data increasingly depends on having mathematical and perceptual models to provide the necessary foundation for effective data analysis and comprehension. The peer-reviewed state-of-the-art research papers included in this book focus on continuous data models, such as is common in medical imaging or computational modeling. From the viewpoint of a visualization scientist, we typically collaborate with an application scientist or engineer who needs to visually explore or study an object which is given by a set of sample points, which originally may or may not have been connected by a mesh. At some point, one generally employs low-order piecewise polynomial approximationsof an object, using one or several dependent functions. In order to have an understanding of a higher-dimensional geometrical “object” or function, ef?cient algorithms supporting real-time analysis and manipulation (- tation, zooming) are needed. Often, the data represents 3D or even time-varying 3D phenomena (such as medical data), and the access to different layers (slices) and structures (the underlying topology) comprising such data is needed.

Scale Space Theory in Computer Vision

Author: Bart ter Haar Romeny
Publisher: Springer Science & Business Media
ISBN: 9783540631675
Format: PDF, ePub, Docs
Download Now
This book constitutes the refereed proceedings of the First International Conference on Scale-Space Theory for Computer Vision, Scale-Space '97, held in Utrecht, The Netherlands, in July 1997. The volume presents 21 revised full papers selected from a total of 41 submissions. Also included are 2 invited papers and 13 poster presentations. This book is the first comprehensive documentation of the application of Scale-Space techniques in computer vision and, in the broader context, in image processing and pattern recognition.

Advanced Algorithmic Approaches to Medical Image Segmentation

Author: S. Kamaledin Setarehdan
Publisher: Springer Science & Business Media
ISBN: 9781852333898
Format: PDF, ePub
Download Now
Medical imaging is an important topic and plays a key role in robust diagnosis and patient care. It has experienced an explosive growth over the last few years due to imaging modalities such as X-rays, computed tomography (CT), magnetic resonance (MR) imaging, and ultrasound. This book focuses primarily on model-based segmentation techniques, which are applied to cardiac, brain, breast and microscopic cancer cell imaging. It includes contributions from authors working in industry and academia, and presents new material.