Label Free Biosensors

Author: Matthew A. Cooper
Publisher: Cambridge University Press
ISBN: 0521884535
Format: PDF, Mobi
Download Now
A detailed technical review of label-free biosensor techniques with worked examples.

Label Free Biosensing

Author: Michael J. Schöning
Publisher: Springer
ISBN: 3319752200
Format: PDF
Download Now
This volume summarizes the state-of-the-art technologies, key advances and future trends in the field of label-free biosensing. It provides detailed insights into the different types of solid-state, label-free biosensors, their underlying transducer principles, advanced materials utilized, device-fabrication techniques and various applications. The book offers graduate students, academic researchers, and industry professionals a comprehensive source of information on all facets of label-free biosensing and the future trends in this flourishing field. Highlights of the subjects covered include label-free biosensing with: · semiconductor field-effect devices such as nanomaterial-modified capacitive electrolyte-insulator-semiconductor structures, silicon nanowire transistors, III-nitride semiconductor devices and light-addressable potentiometric sensors · impedimetric biosensors using planar and 3D electrodes · nanocavity and solid-state nanopore devices · carbon nanotube and graphene/graphene oxide biosensors · electrochemical biosensors using molecularly imprinted polymers · biomimetic sensors based on acoustic signal transduction · enzyme logic systems and digital biosensors based on the biocomputing concept · heat-transfer as a novel transducer principle · ultrasensitive surface plasmon resonance biosensors · magnetic biosensors and magnetic imaging devices

Electrochemical Sensors Biosensors and their Biomedical Applications

Author: Xueji Zhang
Publisher: Academic Press
ISBN: 9780080554891
Format: PDF, ePub, Mobi
Download Now
This book broadly reviews the modem techniques and significant applications of chemical sensors and biosensors. Chapters are written by experts in the field – including Professor Joseph Wang, the most cited scientist in the world and renowned expert on sensor science who is also co-editor. Each chapter provides technical details beyond the level found in typical journal articles, and explores the application of chemical sensors and biosensors to a significant problem in biomedical science, also providing a prospectus for the future. This book compiles the expert knowledge of many specialists in the construction and use of chemical sensors and biosensors including nitric oxide sensors, glucose sensors, DNA sensors, hydrogen sulfide sensors, oxygen sensors, superoxide sensors, immuno sensors, lab on chip, implatable microsensors, et al. Emphasis is laid on practical problems, ranging from chemical application to biomedical monitoring and from in vitro to in vivo, from single cell to animal to human measurement. This provides the unique opportunity of exchanging and combining the expertise of otherwise apparently unrelated disciplines of chemistry, biological engineering, and electronic engineering, medical, physiological. Provides user-oriented guidelines for the proper choice and application of new chemical sensors and biosensors Details new methodological advancements related to and correlated with the measurement of interested species in biomedical samples Contains many case studies to illustrate the range of application and importance of the chemical sensors and biosensors

Dual Mode Electro photonic Silicon Biosensors

Author: José Juan Colás
Publisher: Springer
ISBN: 3319605011
Format: PDF, Mobi
Download Now
This highly interdisciplinary thesis reports on two innovative photonic biosensors that combine multiple simultaneous measurements to provide unique insights into the activity and structure of surface immobilized biological molecules. In addition, it presents a new silicon photonic biosensor that exploits two cascaded resonant sensors to provide two independent measurements of a biological layer immobilized on the surface. By combining these two measurements, it is possible to unambiguously quantify the density and thickness of the molecular layer; here, the approach’s ability to study molecular conformation and conformational changes in real time is demonstrated. The electrophotonic biosensor integrates silicon photonics with electrochemistry into a single technology. This multi-modal biosensor provides a number of unique capabilities that extend the functionality of conventional silicon photonics. For example, by combining the complementary information revealed by simultaneous electrochemical and photonic measurements, it is possible to provide unique insights into on-surface electrochemical processes. Furthermore, the ability to create electrochemical reactions directly on the silicon surface provides a novel approach for engineering the chemical functionality of the photonic sensors. The electrophotonic biosensor thus represents a critical advance towards the development of very high-density photonic sensor arrays for multiplexed diagnostics.

3D Cell Based Biosensors in Drug Discovery Programs

Author: William S. Kisaalita
Publisher: CRC Press
ISBN: 1420073508
Format: PDF, Docs
Download Now
Advances in genomics and combinatorial chemistry during the past two decades inspired innovative technologies and changes in the discovery and pre-clinical development paradigm with the goal of accelerating the process of bringing therapeutic drugs to market. Written by William Kisaalita, one of the foremost experts in this field, 3D Cell-Based Biosensors in Drug Discovery Programs: Microtissue Engineering for High Throughput Screening provides the latest information — from theory to practice — on challenges and opportunities for incorporating 3D cell-based biosensors or assays in drug discovery programs. The book supplies a historical perspective and defines the problem 3D cultures can solve. It also discusses how genomics and combinatorial chemistry have changed the way drug are discovered and presents data from the literature to underscore the less-than-desirable pharmaceutical industry performance under the new paradigm. The author uses results from his lab and those of other investigators to show how 3D micro environments create cell culture models that more closely reflect normal in vivo-like cell morphology and function. He makes a case for validated biomarkers for three-dimensionality in vitro and discusses the advantages and disadvantages of promising tools in the search of these biomarkers. The book concludes with case studies of drugs that were abandoned late in the discovery process, which would have been discarded early if tested with 3D cultures. Dr. Kisaalita presents evidence in support of embracing 3D cell-based systems for widespread use in drug discovery programs. He goes to the root of the issue, establishing the 3D cell-based biosensor physiological relevance by comparing 2D and 3D culture from genomic to functional levels. He then assembles the bioengineering principles behind successful 3D cell-based biosensor systems. Kisaalita also addresses the challenges and opportunities for incorporating 3D cell-based biosensors or cultures in current discovery and pre-clinical development programs. This book makes the case for widespread adoption of 3D cell-based systems, rendering their 2D counterparts, in the words of Dr. Kisaalita "quaint, if not archaic" in the near future.

Handbook of Biosensors and Biosensor Kinetics

Author: Ajit Sadana
Publisher: Elsevier
ISBN: 9780080932859
Format: PDF, Kindle
Download Now
Biosensors are essential to an ever-expanding range of applications, including healthcare; drug design; detection of biological, chemical, and toxic agents; environmental monitoring; biotechnology; aviation; physics; oceanography; and the protection of civilian and engineering infrastructures. This book, like the previous five books on biosensors by this author (and one by the co-author), addresses the neglected areas of analyte-receptor binding and dissociation kinetics occurring on biosensor surfaces. Topics are covered in a comprehensive fashion, with homogeneous presentation for the benefit of the reader. The contributors address the economic aspects of biosensors and incorporate coverage of biosensor fabrication and nanobiosensors, among other topics. The comments, comparison, and discussion presented provides a better perspective of where the field of biosensors is heading. Serves as a comprehensive resource on biosensor analysis Examines timely topics such as biosensor fabrication and nanobiosensors Covers economic aspects and medical applications (e.g., the role of analytes in controlling diabetes)

Chemical Analysis of Food Techniques and Applications

Author: Yolanda Picó
Publisher: Academic Press
ISBN: 0123848636
Format: PDF, ePub
Download Now
Chemical Analysis of Food: Techniques and Applications reviews new technology and challenges in food analysis from multiple perspectives: a review of novel technologies being used in food analysis, an in-depth analysis of several specific approaches, and an examination of the most innovative applications and future trends. This book won a 2012 PROSE Award Honorable Mention in Chemistry and Physics from the Association of American Publishers. The book is structured in two parts: the first describes the role of the latest developments in analytical and bio-analytical techniques and the second reviews the most innovative applications and issues in food analysis. Each chapter is written by experts on the subject and is extensively referenced in order to serve as an effective resource for more detailed information. The techniques discussed range from the non-invasive and non-destructive, such as infrared spectroscopy and ultrasound, to emerging areas such as nanotechnology, biosensors and electronic noses and tongues. Important tools for problem-solving in chemical and biological analysis are discussed in detail. Winner of a PROSE Award 2012, Book: Honorable Mention in Physical Sciences and Mathematics - Chemistry and Physics from the American Association of Publishers Provides researchers with a single source for up-to-date information in food analysis Single go-to reference for emerging techniques and technologies Over 20 renowned international contributors Broad coverage of many important techniques makes this reference useful for a range of food scientists

Electrochemical DNA Biosensors

Author: Mehmet Sengun Ozsoz
Publisher: CRC Press
ISBN: 9814303984
Format: PDF, ePub, Docs
Download Now
This book focuses on the basic electrochemical applications of DNA in various areas, from basic principles to the most recent discoveries. The book comprises theoretical and experimental analysis of various properties of nucleic acids, research methods, and some promising applications. The topics discussed in the book include electrochemical detection of DNA hybridization based on latex/gold nanoparticle and nanotubes; nanomaterial-based electrochemical DNA detection; electrochemical detection of microorganism-based DNA biosensors; gold nanoparticle-based electrochemical DNA biosensors; electrochemical detection of the aptamer-target interaction; nanoparticle-induced catalysis for DNA biosensing; basic terms regarding electrochemical DNA (nucleic acids) biosensors; screen-printed electrodes for electrochemical DNA detection; application of field-effect transistors to label free electrical DNA biosensor arrays; and electrochemical detection of nucleic acids using branched DNA amplifiers.

Graphene Bioelectronics

Author: Ashutosh Tiwari
Publisher: Elsevier
ISBN: 0128133503
Format: PDF, Kindle
Download Now
Graphene Bioelectronics covers the expending field of graphene biomaterials, a wide span of biotechnological breakthroughs, opportunities, possibilities and challenges. It is the first book that focuses entirely on graphene bioelectronics, covering the miniaturization of bioelectrode materials, bioelectrode interfaces, high-throughput biosensing platforms, and systemic approaches for the development of electrochemical biosensors and bioelectronics for biomedical and energy applications. The book also showcases key applications, including advanced security, forensics and environmental monitoring. Thus, the evolution of these scientific areas demands innovations in crosscutting disciplines, starting from fabrication to application. This book is an important reference resource for researchers and technologists in graphene bioelectronics—particularly those working in the area of harvest energy biotechnology—employing state-of-the-art bioelectrode materials techniques. Offers a comprehensive overview of state-of-art research on graphene bioelectronics and their potential applications Provides innovative fabrication strategies and utilization methodologies, which are frequently adopted in the graphene bioelectronics community Shows how graphene can be used to make more effective energy harvesting devices

Chemical Sensors and Biosensors

Author: Florinel-Gabriel Banica
Publisher: John Wiley & Sons
ISBN: 1118354230
Format: PDF, Docs
Download Now
Key features include: Self-assessment questions and exercises Chapters start with essential principles, then go on to address more advanced topics More than 1300 references to direct the reader to key literature and further reading Highly illustrated with 450 figures, including chemical structures and reactions, functioning principles, constructive details and response characteristics Chemical sensors are self-contained analytical devices that provide real-time information on chemical composition. A chemical sensor integrates two distinct functions: recognition and transduction. Such devices are widely used for a variety of applications, including clinical analysis, environment monitoring and monitoring of industrial processes. This text provides an up-to-date survey of chemical sensor science and technology, with a good balance between classical aspects and contemporary trends. Topics covered include: Structure and properties of recognition materials and reagents, including synthetic, biological and biomimetic materials, microorganisms and whole-cells Physicochemical basis of various transduction methods (electrical, thermal, electrochemical, optical, mechanical and acoustic wave-based) Auxiliary materials used e.g. synthetic and natural polymers, inorganic materials, semiconductors, carbon and metallic materials properties and applications of advanced materials (particularly nanomaterials) in the production of chemical sensors and biosensors Advanced manufacturing methods Sensors obtained by combining particular transduction and recognition methods Mathematical modeling of chemical sensor processes Suitable as a textbook for graduate and final year undergraduate students, and also for researchers in chemistry, biology, physics, physiology, pharmacology and electronic engineering, this bookis valuable to anyone interested in the field of chemical sensors and biosensors.