Latent Variable Modeling Using R

Author: A. Alexander Beaujean
Publisher: Routledge
ISBN: 131797073X
Format: PDF, Mobi
Download Now
This step-by-step guide is written for R and latent variable model (LVM) novices. Utilizing a path model approach and focusing on the lavaan package, this book is designed to help readers quickly understand LVMs and their analysis in R. The author reviews the reasoning behind the syntax selected and provides examples that demonstrate how to analyze data for a variety of LVMs. Featuring examples applicable to psychology, education, business, and other social and health sciences, minimal text is devoted to theoretical underpinnings. The material is presented without the use of matrix algebra. As a whole the book prepares readers to write about and interpret LVM results they obtain in R. Each chapter features background information, boldfaced key terms defined in the glossary, detailed interpretations of R output, descriptions of how to write the analysis of results for publication, a summary, R based practice exercises (with solutions included in the back of the book), and references and related readings. Margin notes help readers better understand LVMs and write their own R syntax. Examples using data from published work across a variety of disciplines demonstrate how to use R syntax for analyzing and interpreting results. R functions, syntax, and the corresponding results appear in gray boxes to help readers quickly locate this material. A unique index helps readers quickly locate R functions, packages, and datasets. The book and accompanying website at http://blogs.baylor.edu/rlatentvariable/ provides all of the data for the book’s examples and exercises as well as R syntax so readers can replicate the analyses. The book reviews how to enter the data into R, specify the LVMs, and obtain and interpret the estimated parameter values. The book opens with the fundamentals of using R including how to download the program, use functions, and enter and manipulate data. Chapters 2 and 3 introduce and then extend path models to include latent variables. Chapter 4 shows readers how to analyze a latent variable model with data from more than one group, while Chapter 5 shows how to analyze a latent variable model with data from more than one time period. Chapter 6 demonstrates the analysis of dichotomous variables, while Chapter 7 demonstrates how to analyze LVMs with missing data. Chapter 8 focuses on sample size determination using Monte Carlo methods, which can be used with a wide range of statistical models and account for missing data. The final chapter examines hierarchical LVMs, demonstrating both higher-order and bi-factor approaches. The book concludes with three Appendices: a review of common measures of model fit including their formulae and interpretation; syntax for other R latent variable models packages; and solutions for each chapter’s exercises. Intended as a supplementary text for graduate and/or advanced undergraduate courses on latent variable modeling, factor analysis, structural equation modeling, item response theory, measurement, or multivariate statistics taught in psychology, education, human development, business, economics, and social and health sciences, this book also appeals to researchers in these fields. Prerequisites include familiarity with basic statistical concepts, but knowledge of R is not assumed.

Lineare Strukturgleichungsmodelle

Author: Holger Steinmetz
Publisher: Rainer Hampp Verlag
ISBN: 3957101492
Format: PDF, ePub, Mobi
Download Now
Lineare Strukturgleichungsmodelle sind aus der verhaltenswissenschaftlichen Forschung nicht mehr wegzudenken. Sie sind ein nützliches Werkzeug, um Hypothesen über Beziehungen zwischen Variablen zu prüfen und - mehr noch - Implikationen kausaler Strukturen zu testen. In diesem Buch werden Grundlagen, Hintergründe und die Vorgehensweisen bei der Spezifizierung von Kausalmodellen diskutiert. Dies wird an einem empirischen Beispiel und unter Verwendung des lavaan-Pakets innerhalb der Software R illustriert. Der Schwerpunkt des Buchs liegt hierbei weniger auf methodischen und statistischen Aspekten eines Modells, sondern auf der adäquaten Übersetzung der theoretischen Vorstellungen in ein Modell. Ein besonderer Stellenwert wird dem Verständnis der kausalen Implikationen von Modellen, der theoretische Bedeutung von Variablen, der Diagnostik einer Fehlanpassung an die Daten und modernen Konzepten wie dem Instrumentalvariablen-Ansatz aus der Ökonometrie und dem d-separation-Konzept, eingeräumt. Somit bietet das Buch sowohl einen Einstieg für Anfänger/innen als auch interessante Inhalte für Fortgeschrittene. Holger Steinmetz ist wissenschaftlicher Mitarbeiter am Lehrstuhl für International Business Studies der Universität Paderborn.

Strukturgleichungsmodelle in den Sozialwissenschaften

Author: Jost Reinecke
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311039698X
Format: PDF, ePub, Mobi
Download Now
This work provides a basic introduction to modeling using structural equations, including a broad survey of potential areas of application. It shows how one can perform relevant analyses of empirical data using widely disseminated modeling programs. This textbook is designed for use in advanced courses in statistics and multivariate analytic methods.

Latent Variable Models

Author: John C. Loehlin
Publisher: Taylor & Francis
ISBN: 131728528X
Format: PDF, ePub
Download Now
Latent Variable Models: An Introduction to Factor, Path, and Structural Equation Analysis introduces latent variable models by utilizing path diagrams to explain the relationships in the models. This approach helps less mathematically-inclined readers to grasp the underlying relations among path analysis, factor analysis, and structural equation modeling, and to set up and carry out such analyses. This revised and expanded fifth edition again contains key chapters on path analysis, structural equation models, and exploratory factor analysis. In addition, it contains new material on composite reliability, models with categorical data, the minimum average partial procedure, bi-factor models, and communicating about latent variable models. The informal writing style and the numerous illustrative examples make the book accessible to readers of varying backgrounds. Notes at the end of each chapter expand the discussion and provide additional technical detail and references. Moreover, most chapters contain an extended example in which the authors work through one of the chapter’s examples in detail to aid readers in conducting similar analyses with their own data. The book and accompanying website provide all of the data for the book’s examples as well as syntax from latent variable programs so readers can replicate the analyses. The book can be used with any of a variety of computer programs, but special attention is paid to LISREL and R. An important resource for advanced students and researchers in numerous disciplines in the behavioral sciences, education, business, and health sciences, Latent Variable Models is a practical and readable reference for those seeking to understand or conduct an analysis using latent variables.

konometrie f r Dummies

Author: Roberto Pedace
Publisher: John Wiley & Sons
ISBN: 3527801529
Format: PDF, ePub, Mobi
Download Now
Theorien verstehen und Techniken anwenden Was haben die Gehälter von Spitzensportlern und der Mindestlohn gemeinsam? Richtig, man kann sie mit Ökonometrie erforschen. Im Buch steht, wie es geht. Und nicht nur dafür, sondern für viele weitere Gebiete lohnt es sich, der zunächst etwas trocken und sperrig anmutenden Materie eine Chance zu geben. Lernen Sie von den Autoren, wie Sie spannende Fragen formulieren, passende Variablen festlegen, treffsichere Modelle entwerfen und Ihre Aussagen auf Herz und Nieren prüfen. Werden Sie sicher im Umgang mit Hypothesentests, Regressionsmodellen, Logit- & Probit-Modellen und allen weiteren gängigen Methoden der Ökonometrie. So begleitet Ökonometrie für Dummies Sie Schritt für Schritt und mit vielen Beispielen samt R Output durch dieses spannende Thema.

The SAGE Handbook of Quantitative Methods in Psychology

Author: Roger E Millsap
Publisher: SAGE
ISBN: 144620667X
Format: PDF, Docs
Download Now
`I often... wonder to myself whether the field needs another book, handbook, or encyclopedia on this topic. In this case I think that the answer is truly yes. The handbook is well focused on important issues in the field, and the chapters are written by recognized authorities in their fields. The book should appeal to anyone who wants an understanding of important topics that frequently go uncovered in graduate education in psychology' - David C Howell, Professor Emeritus, University of Vermont Quantitative psychology is arguably one of the oldest disciplines within the field of psychology and nearly all psychologists are exposed to quantitative psychology in some form. While textbooks in statistics, research methods and psychological measurement exist, none offer a unified treatment of quantitative psychology. The SAGE Handbook of Quantitative Methods in Psychology does just that. Each chapter covers a methodological topic with equal attention paid to established theory and the challenges facing methodologists as they address new research questions using that particular methodology. The reader will come away from each chapter with a greater understanding of the methodology being addressed as well as an understanding of the directions for future developments within that methodological area. Drawing on a global scholarship, the Handbook is divided into seven parts: Part One: Design and Inference: addresses issues in the inference of causal relations from experimental and non-experimental research, along with the design of true experiments and quasi-experiments, and the problem of missing data due to various influences such as attrition or non-compliance. Part Two: Measurement Theory: begins with a chapter on classical test theory, followed by the common factor analysis model as a model for psychological measurement. The models for continuous latent variables in item-response theory are covered next, followed by a chapter on discrete latent variable models as represented in latent class analysis. Part Three: Scaling Methods: covers metric and non-metric scaling methods as developed in multidimensional scaling, followed by consideration of the scaling of discrete measures as found in dual scaling and correspondence analysis. Models for preference data such as those found in random utility theory are covered next. Part Four: Data Analysis: includes chapters on regression models, categorical data analysis, multilevel or hierarchical models, resampling methods, robust data analysis, meta-analysis, Bayesian data analysis, and cluster analysis. Part Five: Structural Equation Models: addresses topics in general structural equation modeling, nonlinear structural equation models, mixture models, and multilevel structural equation models. Part Six: Longitudinal Models: covers the analysis of longitudinal data via mixed modeling, time series analysis and event history analysis. Part Seven: Specialized Models: covers specific topics including the analysis of neuro-imaging data and functional data-analysis.

Handbuch der sozialwissenschaftlichen Datenanalyse

Author: Christof Wolf
Publisher: Springer-Verlag
ISBN: 3531920383
Format: PDF, Kindle
Download Now
Das Handbuch der sozialwissenschaftlichen Datenanalyse bietet in über 40 Kapiteln eine umfassende Darstellung multivariater Analyseverfahren. Schwerpunkte des Handbuchs bilden Grundlagen der Datenanalyse, regressionsanalytische Verfahren für Quer- und Längsschnittsdaten sowie Skalierungsverfahren. Behandelt werden u. a. OLS-, logistische und robuste Regression, Strukturgleichungsmodelle, Mehrebenen-, Panel-, Ereignisdaten- und Zeitreihenanalyse, MDS und Rasch-Modelle. Darüber hinaus werden viele neuere Verfahren dargestellt, etwa multiple Imputation, Bootstrappen, Analyse latenter Klassen und propensity score matching. Jedes Kapitel beginnt mit einer allgemein verständlichen Einführung. Es folgt eine Darstellung der mathematisch-statistischen Grundlagen. Anschließend wird jedes Verfahren anhand eines sozialwissenschaftlichen Beispiels vorgestellt. Die Beiträge enden mit Hinweisen auf typische Anwendungsfehler und einer kommentierten Literaturempfehlung.

Wahrscheinlichkeit und Regression

Author: Rolf Steyer
Publisher: Springer-Verlag
ISBN: 3642556736
Format: PDF, Mobi
Download Now
Rolf Steyer, Autor des erfolgreichen Lehrbuchs "Messen und Testen", schließt mit diesem Buch die Kluft zwischen Regressionstheorie und deren empirischer Anwendung, der Regressionsanalyse. Grundbegriffe der Statistik werden ohne Bezug zu komplizierten Stichprobenmodellen erläutert. Neben der Regressionsanalyse können auch verschiedene statistische Verfahren, wie die Varianz- oder Faktorenanalyse, als Spezialfälle regressiver Abhängigkeiten angesehen werden. Das Studium der Regressionstheorie dient daher dem Verständnis grundlegender statistischer Verfahren in der Psychologie.