Lectures on K3 Surfaces

Author: Daniel Huybrechts
Publisher: Cambridge University Press
ISBN: 1316797252
Format: PDF, ePub
Download Now
K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.

The Geometry of Moduli Spaces of Sheaves

Author: Daniel Huybrechts
Publisher: Cambridge University Press
ISBN: 1139485822
Format: PDF, Docs
Download Now
Now back in print, this highly regarded book has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces, which include moduli spaces in positive characteristic, moduli spaces of principal bundles and of complexes, Hilbert schemes of points on surfaces, derived categories of coherent sheaves, and moduli spaces of sheaves on Calabi–Yau threefolds. The authors review changes in the field since the publication of the original edition in 1997 and point the reader towards further literature. References have been brought up to date and errors removed. Developed from the authors' lectures, this book is ideal as a text for graduate students as well as a valuable resource for any mathematician with a background in algebraic geometry who wants to learn more about Grothendieck's approach.

Lectures on N X p

Author: Jean-Pierre Serre
Publisher: CRC Press
ISBN: 1466501936
Format: PDF
Download Now
Lectures on NX(p) deals with the question on how NX(p), the number of solutions of mod p congruences, varies with p when the family (X) of polynomial equations is fixed. While such a general question cannot have a complete answer, it offers a good occasion for reviewing various techniques in l-adic cohomology and group representations, presented in a context that is appealing to specialists in number theory and algebraic geometry. Along with covering open problems, the text examines the size and congruence properties of NX(p) and describes the ways in which it is computed, by closed formulae and/or using efficient computers. The first four chapters cover the preliminaries and contain almost no proofs. After an overview of the main theorems on NX(p), the book offers simple, illustrative examples and discusses the Chebotarev density theorem, which is essential in studying frobenian functions and frobenian sets. It also reviews l-adic cohomology. The author goes on to present results on group representations that are often difficult to find in the literature, such as the technique of computing Haar measures in a compact l-adic group by performing a similar computation in a real compact Lie group. These results are then used to discuss the possible relations between two different families of equations X and Y. The author also describes the Archimedean properties of NX(p), a topic on which much less is known than in the l-adic case. Following a chapter on the Sato-Tate conjecture and its concrete aspects, the book concludes with an account of the prime number theorem and the Chebotarev density theorem in higher dimensions.

Fourier Mukai Transforms in Algebraic Geometry

Author: Daniel Huybrechts
Publisher: Oxford University Press on Demand
ISBN: 0199296863
Format: PDF
Download Now
This work is based on a course given at the Institut de Mathematiques de Jussieu, on the derived category of coherent sheaves on a smooth projective variety. It is aimed at students with a basic knowledge of algebraic geometry and contains full proofs and exercises that aid the reader.

Cox Rings

Author: Ivan Arzhantsev
Publisher: Cambridge University Press
ISBN: 1107024625
Format: PDF, Kindle
Download Now
This book provides a largely self-contained introduction to Cox rings and their applications in algebraic and arithmetic geometry.

Chow Rings Decomposition of the Diagonal and the Topology of Families AM 187

Author: Claire Voisin
Publisher: Princeton University Press
ISBN: 1400850533
Format: PDF, Docs
Download Now
In this book, Claire Voisin provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The volume is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by Voisin. The book focuses on two central objects: the diagonal of a variety—and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups—as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by Voisin looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kähler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others.

Lectures on Algebraic Categorification

Author: Volodymyr Mazorchuk
Publisher: European Mathematical Society
ISBN: 9783037191088
Format: PDF, Mobi
Download Now
The term "categorification" was introduced by Louis Crane in 1995 and refers to the process of replacing set-theoretic notions by the corresponding category-theoretic analogues. This text mostly concentrates on algebraical aspects of the theory, presented in the historical perspective, but also contains several topological applications, in particular, an algebraic (or, more precisely, representation-theoretical) approach to categorification. It consists of fifteen sections corresponding to fifteen one-hour lectures given during a Master Class at Aarhus University, Denmark in October 2010. There are some exercises collected at the end of the text and a rather extensive list of references. Video recordings of all (but one) lectures are available from the Master Class website. The book provides an introductory overview of the subject rather than a fully detailed monograph. The emphasis is made on definitions, examples and formulations of the results. Most proofs are either briefly outlined or omitted. However, complete proofs can be found by tracking references. It is assumed that the reader is familiar with the basics of category theory, representation theory, topology, and Lie algebra.

Galois Theory of Linear Differential Equations

Author: Marius van der Put
Publisher: Springer Science & Business Media
ISBN: 3642557503
Format: PDF, Docs
Download Now
From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews

3264 and All That

Author: David Eisenbud
Publisher: Cambridge University Press
ISBN: 1316679381
Format: PDF, ePub, Mobi
Download Now
This book can form the basis of a second course in algebraic geometry. As motivation, it takes concrete questions from enumerative geometry and intersection theory, and provides intuition and technique, so that the student develops the ability to solve geometric problems. The authors explain key ideas, including rational equivalence, Chow rings, Schubert calculus and Chern classes, and readers will appreciate the abundant examples, many provided as exercises with solutions available online. Intersection is concerned with the enumeration of solutions of systems of polynomial equations in several variables. It has been an active area of mathematics since the work of Leibniz. Chasles' nineteenth-century calculation that there are 3264 smooth conic plane curves tangent to five given general conics was an important landmark, and was the inspiration behind the title of this book. Such computations were motivation for Poincaré's development of topology, and for many subsequent theories, so that intersection theory is now a central topic of modern mathematics.