Linear Algebra and Linear Operators in Engineering

Author: H. Ted Davis
Publisher: Elsevier
ISBN: 9780080510248
Format: PDF
Download Now
Designed for advanced engineering, physical science, and applied mathematics students, this innovative textbook is an introduction to both the theory and practical application of linear algebra and functional analysis. The book is self-contained, beginning with elementary principles, basic concepts, and definitions. The important theorems of the subject are covered and effective application tools are developed, working up to a thorough treatment of eigenanalysis and the spectral resolution theorem. Building on a fundamental understanding of finite vector spaces, infinite dimensional Hilbert spaces are introduced from analogy. Wherever possible, theorems and definitions from matrix theory are called upon to drive the analogy home. The result is a clear and intuitive segue to functional analysis, culminating in a practical introduction to the functional theory of integral and differential operators. Numerous examples, problems, and illustrations highlight applications from all over engineering and the physical sciences. Also included are several numerical applications, complete with Mathematica solutions and code, giving the student a "hands-on" introduction to numerical analysis. Linear Algebra and Linear Operators in Engineering is ideally suited as the main text of an introductory graduate course, and is a fine instrument for self-study or as a general reference for those applying mathematics. Contains numerous Mathematica examples complete with full code and solutions Provides complete numerical algorithms for solving linear and nonlinear problems Spans elementary notions to the functional theory of linear integral and differential equations Includes over 130 examples, illustrations, and exercises and over 220 problems ranging from basic concepts to challenging applications Presents real-life applications from chemical, mechanical, and electrical engineering and the physical sciences

Books in Print

Author:
Publisher:
ISBN:
Format: PDF, ePub, Mobi
Download Now
Books in print is the major source of information on books currently published and in print in the United States. The database provides the record of forthcoming books, books in-print, and books out-of-print.

Schaum s Outline of Theory and Problems of Linear Algebra

Author: Seymour Lipschutz
Publisher: Erlangga
ISBN: 9789797815714
Format: PDF, Mobi
Download Now
• This third edition of the successful outline in linear algebra—which sold more than 400,000 copies in its past two editions—has been thoroughly updated to increase its applicability to the fields in which linear algebra is now essential: computer science, engineering, mathematics, physics, and quantitative analysis• Revised coverage includes new problems relevant to computer science and a revised chapter on linear equations• More than 100,000 students enroll in beginning and advanced Linear Algebra courses each year. This outline is appropriate for both first- and second-level linear algebra courses

CONTROL SYSTEMS ROBOTICS AND AUTOMATION Volume XXI

Author: Heinz D. Unbehauen
Publisher: EOLSS Publications
ISBN: 1848261608
Format: PDF, Kindle
Download Now
This Encyclopedia of Control Systems, Robotics, and Automation is a component of the global Encyclopedia of Life Support Systems EOLSS, which is an integrated compendium of twenty one Encyclopedias. This 22-volume set contains 240 chapters, each of size 5000-30000 words, with perspectives, applications and extensive illustrations. It is the only publication of its kind carrying state-of-the-art knowledge in the fields of Control Systems, Robotics, and Automation and is aimed, by virtue of the several applications, at the following five major target audiences: University and College Students, Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs.

Mathematics for Physical Science and Engineering

Author: Frank E. Harris
Publisher: Academic Press
ISBN: 0128010495
Format: PDF, Mobi
Download Now
Mathematics for Physical Science and Engineering is a complete text in mathematics for physical science that includes the use of symbolic computation to illustrate the mathematical concepts and enable the solution of a broader range of practical problems. This book enables professionals to connect their knowledge of mathematics to either or both of the symbolic languages Maple and Mathematica. The book begins by introducing the reader to symbolic computation and how it can be applied to solve a broad range of practical problems. Chapters cover topics that include: infinite series; complex numbers and functions; vectors and matrices; vector analysis; tensor analysis; ordinary differential equations; general vector spaces; Fourier series; partial differential equations; complex variable theory; and probability and statistics. Each important concept is clarified to students through the use of a simple example and often an illustration. This book is an ideal reference for upper level undergraduates in physical chemistry, physics, engineering, and advanced/applied mathematics courses. It will also appeal to graduate physicists, engineers and related specialties seeking to address practical problems in physical science. Clarifies each important concept to students through the use of a simple example and often an illustration Provides quick-reference for students through multiple appendices, including an overview of terms in most commonly used applications (Mathematica, Maple) Shows how symbolic computing enables solving a broad range of practical problems

Iterative Methods for Linear and Nonlinear Equations

Author: C. T. Kelley
Publisher: SIAM
ISBN: 9781611970944
Format: PDF, ePub, Docs
Download Now
Linear and nonlinear systems of equations are the basis for many, if not most, of the models of phenomena in science and engineering, and their efficient numerical solution is critical to progress in these areas. This is the first book to be published on nonlinear equations since the mid-1980s. Although it stresses recent developments in this area, such as Newton-Krylov methods, considerable material on linear equations has been incorporated. This book focuses on a small number of methods and treats them in depth. The author provides a complete analysis of the conjugate gradient and generalized minimum residual iterations as well as recent advances including Newton-Krylov methods, incorporation of inexactness and noise into the analysis, new proofs and implementations of Broyden's method, and globalization of inexact Newton methods. Examples, methods, and algorithmic choices are based on applications to infinite dimensional problems such as partial differential equations and integral equations. The analysis and proof techniques are constructed with the infinite dimensional setting in mind and the computational examples and exercises are based on the MATLAB environment.

Emerging Applications of Algebraic Geometry

Author: Mihai Putinar
Publisher: Springer Science & Business Media
ISBN: 0387096868
Format: PDF, ePub, Mobi
Download Now
Recent advances in both the theory and implementation of computational algebraic geometry have led to new, striking applications to a variety of fields of research. The articles in this volume highlight a range of these applications and provide introductory material for topics covered in the IMA workshops on "Optimization and Control" and "Applications in Biology, Dynamics, and Statistics" held during the IMA year on Applications of Algebraic Geometry. The articles related to optimization and control focus on burgeoning use of semidefinite programming and moment matrix techniques in computational real algebraic geometry. The new direction towards a systematic study of non-commutative real algebraic geometry is well represented in the volume. Other articles provide an overview of the way computational algebra is useful for analysis of contingency tables, reconstruction of phylogenetic trees, and in systems biology. The contributions collected in this volume are accessible to non-experts, self-contained and informative; they quickly move towards cutting edge research in these areas, and provide a wealth of open problems for future research.

Elementary Linear Algebra

Author: Ron Larson
Publisher: Cengage Learning
ISBN: 1305887824
Format: PDF, Mobi
Download Now
ELEMENTARY LINEAR ALGEBRA’s clear, careful, and concise presentation of material helps you fully understand how mathematics works. The author balances theory with examples, applications, and geometric intuition for a complete, step-by-step learning system. To engage you in the material, a new design highlights the relevance of the mathematics and makes the book easier to read. Data and applications reflect current statistics and examples, demonstrating the link between theory and practice. The companion website LarsonLinearAlgebra.com offers free access to multiple study tools and resources. CalcChat.com offers free step-by-step solutions to the odd-numbered exercises in the text. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.