Linear Mixed Models for Longitudinal Data

Author: Geert Verbeke
Publisher: Springer Science & Business Media
ISBN: 1441902996
Format: PDF, Docs
Download Now
This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Most analyses were done with the MIXED procedure of the SAS software package, but the data analyses are presented in a software-independent fashion.

Models for Discrete Longitudinal Data

Author: Geert Molenberghs
Publisher: Springer Science & Business Media
ISBN: 0387289801
Format: PDF, Mobi
Download Now
The linear mixed model has become the main parametric tool for the analysis of continuous longitudinal data, as the authors discussed in their 2000 book. Without putting too much emphasis on software, the book shows how the different approaches can be implemented within the SAS software package. The authors received the American Statistical Association's Excellence in Continuing Education Award based on short courses on longitudinal and incomplete data at the Joint Statistical Meetings of 2002 and 2004.

Linear and Generalized Linear Mixed Models and Their Applications

Author: Jiming Jiang
Publisher: Springer Science & Business Media
ISBN: 0387479465
Format: PDF, Docs
Download Now
This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models. It presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it includes recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested in using mixed models for statistical data analysis.

Correlated Data Analysis Modeling Analytics and Applications

Author: Peter X. -K. Song
Publisher: Springer Science & Business Media
ISBN: 038771393X
Format: PDF, ePub, Docs
Download Now
This book covers recent developments in correlated data analysis. It utilizes the class of dispersion models as marginal components in the formulation of joint models for correlated data. This enables the book to cover a broader range of data types than the traditional generalized linear models. The reader is provided with a systematic treatment for the topic of estimating functions, and both generalized estimating equations (GEE) and quadratic inference functions (QIF) are studied as special cases. In addition to the discussions on marginal models and mixed-effects models, this book covers new topics on joint regression analysis based on Gaussian copulas.

Linear Mixed Models in Practice

Author: Geert Verbeke
Publisher: Springer Science & Business Media
ISBN: 146122294X
Format: PDF, Kindle
Download Now
A comprehensive treatment of linear mixed models, focusing on examples from designed experiments and longitudinal studies. Aimed at applied statisticians and biomedical researchers in industry, public health organisations, contract research organisations, and academia, this book is explanatory rather than mathematical rigorous. Although most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated, considerable effort was put into presenting the data analyses in a software-independent fashion.

Dynamic Mixed Models for Familial Longitudinal Data

Author: Brajendra C. Sutradhar
Publisher: Springer Science & Business Media
ISBN: 9781441983428
Format: PDF, Kindle
Download Now
This book provides a theoretical foundation for the analysis of discrete data such as count and binary data in the longitudinal setup. Unlike the existing books, this book uses a class of auto-correlation structures to model the longitudinal correlations for the repeated discrete data that accommodates all possible Gaussian type auto-correlation models as special cases including the equi-correlation models. This new dynamic modelling approach is utilized to develop theoretically sound inference techniques such as the generalized quasi-likelihood (GQL) technique for consistent and efficient estimation of the underlying regression effects involved in the model, whereas the existing ‘working’ correlations based GEE (generalized estimating equations) approach has serious theoretical limitations both for consistent and efficient estimation, and the existing random effects based correlations approach is not suitable to model the longitudinal correlations. The book has exploited the random effects carefully only to model the correlations of the familial data. Subsequently, this book has modelled the correlations of the longitudinal data collected from the members of a large number of independent families by using the class of auto-correlation structures conditional on the random effects. The book also provides models and inferences for discrete longitudinal data in the adaptive clinical trial set up. The book is mathematically rigorous and provides details for the development of estimation approaches under selected familial and longitudinal models. Further, while the book provides special cares for mathematics behind the correlation models, it also presents the illustrations of the statistical analysis of various real life data. This book will be of interest to the researchers including graduate students in biostatistics and econometrics, among other applied statistics research areas. Brajendra Sutradhar is a University Research Professor at Memorial University in St. John’s, Canada. He is an elected member of the International Statistical Institute and a fellow of the American Statistical Association. He has published about 110 papers in statistics journals in the area of multivariate analysis, time series analysis including forecasting, sampling, survival analysis for correlated failure times, robust inferences in generalized linear mixed models with outliers, and generalized linear longitudinal mixed models with bio-statistical and econometric applications. He has served as an associate editor for six years for Canadian Journal of Statistics and for four years for the Journal of Environmental and Ecological Statistics. He has served for 3 years as a member of the advisory committee on statistical methods in Statistics Canada. Professor Sutradhar was awarded 2007 distinguished service award of Statistics Society of Canada for his many years of services to the society including his special services for society’s annual meetings.

Longitudinal Data Analysis

Author: Garrett Fitzmaurice
Publisher: CRC Press
ISBN: 9781420011579
Format: PDF, ePub
Download Now
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory and applications. It also focuses on the assorted challenges that arise in analyzing longitudinal data. After discussing historical aspects, leading researchers explore four broad themes: parametric modeling, nonparametric and semiparametric methods, joint models, and incomplete data. Each of these sections begins with an introductory chapter that provides useful background material and a broad outline to set the stage for subsequent chapters. Rather than focus on a narrowly defined topic, chapters integrate important research discussions from the statistical literature. They seamlessly blend theory with applications and include examples and case studies from various disciplines. Destined to become a landmark publication in the field, this carefully edited collection emphasizes statistical models and methods likely to endure in the future. Whether involved in the development of statistical methodology or the analysis of longitudinal data, readers will gain new perspectives on the field.

Linear Mixed Effects Models Using R

Author: Andrzej Gałecki
Publisher: Springer Science & Business Media
ISBN: 1461439000
Format: PDF
Download Now
Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.

Bayesian and Frequentist Regression Methods

Author: Jon Wakefield
Publisher: Springer Science & Business Media
ISBN: 1441909257
Format: PDF, ePub, Docs
Download Now
Bayesian and Frequentist Regression Methods provides a modern account of both Bayesian and frequentist methods of regression analysis. Many texts cover one or the other of the approaches, but this is the most comprehensive combination of Bayesian and frequentist methods that exists in one place. The two philosophical approaches to regression methodology are featured here as complementary techniques, with theory and data analysis providing supplementary components of the discussion. In particular, methods are illustrated using a variety of data sets. The majority of the data sets are drawn from biostatistics but the techniques are generalizable to a wide range of other disciplines.