LMIs in Control Systems

Author: Guang-Ren Duan
Publisher: CRC Press
ISBN: 1466583002
Format: PDF, ePub, Docs
Download Now
Although LMI has emerged as a powerful tool with applications across the major domains of systems and control, there has been a need for a textbook that provides an accessible introduction to LMIs in control systems analysis and design. Filling this need, LMIs in Control Systems: Analysis, Design and Applications focuses on the basic analysis and design problems of both continuous- and discrete-time linear systems based on LMI methods. Providing a broad and systematic introduction to the rich content of LMI-based control systems analysis and design with applications, this book is suitable for use as a textbook for LMI related courses for senior undergraduate and postgraduate students in the fields of control systems theory and applications. Key Features: Contains four well-structured parts: Preliminaries, Control Systems Analysis, Control Systems Design, and Applications, as well as an introduction chapter and two appendices Summarizes most of the technical lemmas used in the book in one preliminary chapter, and classifies them systematically into different groups Includes many examples, exercises, and practical application backgrounds Summarizes most of the important results in the last section of each chapter, in a clear table format Contains an application part composed of two chapters that respectively deal with missile and satellite attitude control using LMI techniques Provides a brief and clear introduction to the use of the LMI Lab in the MATLAB® Robust Control Toolbox Supplies detailed proofs for all main results, with lengthy ones clearly divided into different subsections or steps—using elementary mathematics whenever possible Uses a pole assignment Benchmark problem, in support of the numerical reliability of LMI techniques, where numerical unreliability could result in a solution to a problem that is far from the true one A Solutions Manual and MATLAB® codes for the computational exercise problems and examples are available upon qualified course adoption.

Advances in Linear Matrix Inequality Methods in Control

Author: Laurent El Ghaoui
Publisher: SIAM
ISBN: 9780898719833
Format: PDF, ePub, Docs
Download Now
Linear matrix inequalities (LMIs) have recently emerged as useful tools for solving a number of control problems. This book provides an up-to-date account of the LMI method and covers topics such as recent LMI algorithms, analysis and synthesis issues, nonconvex problems, and applications. It also emphasizes applications of the method to areas other than control.

Handling Uncertainty and Networked Structure in Robot Control

Author: Lucian Busoniu
Publisher: Springer
ISBN: 3319263277
Format: PDF, ePub, Mobi
Download Now
This book focuses on two challenges posed in robot control by the increasing adoption of robots in the everyday human environment: uncertainty and networked communication. Part I of the book describes learning control to address environmental uncertainty. Part II discusses state estimation, active sensing, and complex scenario perception to tackle sensing uncertainty. Part III completes the book with control of networked robots and multi-robot teams. Each chapter features in-depth technical coverage and case studies highlighting the applicability of the techniques, with real robots or in simulation. Platforms include mobile ground, aerial, and underwater robots, as well as humanoid robots and robot arms. Source code and experimental data are available at http://extras.springer.com. The text gathers contributions from academic and industry experts, and offers a valuable resource for researchers or graduate students in robot control and perception. It also benefits researchers in related areas, such as computer vision, nonlinear and learning control, and multi-agent systems.

Generalized Sylvester Equations

Author: Guang-Ren Duan
Publisher: CRC Press
ISBN: 1482243989
Format: PDF, Mobi
Download Now
Provides One Unified Formula That Gives Solutions to Several Types of GSEs Generalized Sylvester equations (GSEs) are applied in many fields, including applied mathematics, systems and control, and signal processing. Generalized Sylvester Equations: Unified Parametric Solutions presents a unified parametric approach for solving various types of GSEs. In an extremely neat and elegant matrix form, the book provides a single unified parametric solution formula for all the types of GSEs, which further reduces to a specific clear vector form when the parameter matrix F in the equations is a Jordan matrix. Particularly, when the parameter matrix F is diagonal, the reduced vector form becomes extremely simple. The first chapter introduces several types of GSEs and gives a brief overview of solutions to GSEs. The two subsequent chapters then show the importance of GSEs using four typical control design applications and discuss the F‐coprimeness of a pair of polynomial matrices. The next several chapters deal with parametric solutions to GSEs. The final two chapters present analytical solutions to normal Sylvester equations (NSEs), including the well‐known continuous‐ and discrete‐time Lyapunov equations. An appendix provides the proofs of some theorems. The book can be used as a reference for graduate and senior undergraduate courses in applied mathematics and control systems analysis and design. It will also be useful to readers interested in research and applications based on Sylvester equations.

Analysis and Control of Complex Dynamical Systems

Author: Kazuyuki Aihara
Publisher: Springer
ISBN: 4431550135
Format: PDF, ePub, Docs
Download Now
This book is the first to report on theoretical breakthroughs on control of complex dynamical systems developed by collaborative researchers in the two fields of dynamical systems theory and control theory. As well, its basic point of view is of three kinds of complexity: bifurcation phenomena subject to model uncertainty, complex behavior including periodic/quasi-periodic orbits as well as chaotic orbits, and network complexity emerging from dynamical interactions between subsystems. Analysis and Control of Complex Dynamical Systems offers a valuable resource for mathematicians, physicists, and biophysicists, as well as for researchers in nonlinear science and control engineering, allowing them to develop a better fundamental understanding of the analysis and control synthesis of such complex systems.

Control of Stochastic Hybrid Systems based on Probabilistic Reachable Set Computation

Author: Leonhard Asselborn
Publisher: kassel university press GmbH
ISBN: 3737605807
Format: PDF
Download Now
This thesis proposes an algorithmic controller synthesis based on the computation of probabilistic reachable sets for stochastic hybrid systems. Hybrid systems consist in general of a composition of discrete and continuous valued dynamics, and are able to capture a wide range of physical phenomena. The stochasticity is considered in form of normally distributed initial continuous states and normally distributed disturbances, resulting in stochastic hybrid systems.

The reachable sets describe all states, which are reachable by a system for a given initialization of the system state, inputs, disturbances, and time horizon. For stochastic hybrid systems, these sets are probabilistic, since the system state and disturbance are random variables. This thesis introduces probabilistic reachable sets with a predefined confidence, which are used in an optimization based procedure for the determination of stabilizing control inputs. Besides the stabilizing property, the controlled dynamics also observes input constraints, as well as, so-called chance constraints for the continuous state.

The main contribution of this thesis is the formulation of an algorithmic control procedure for each considerd type of stochastic hybrid systems, where different discrete dynamics are considered. First, a control procedure for a deterministic system with bounded disturbances is introduced, and thereafter a probabilistic distribution of the system state and the disturbance is assumed. The formulation of probabilistic reachable sets with a predefined confidence is subsequently used in a control procedure for a stochastic hybrid system, in which the switch of the continuous dynamics is externally induced. Finally, the control procedure based on reachable set computation is extended to a type of stochastic hybrid systems with autonomously switching of the continuous dynamics.


Advanced Control Design with Application to Electromechanical Systems

Author: Magdi S Mahmoud
Publisher: Butterworth-Heinemann
ISBN: 0128145447
Format: PDF, Docs
Download Now
Advanced Control Design with Application to Electromechanical Systems represents the continuing effort in the pursuit of analytic theory and rigorous design for robust control methods. The book provides an overview of the feedback control systems and their associated definitions, with discussions on finite dimension vector spaces, mappings and convex analysis. In addition, a comprehensive treatment of continuous control system design is presented, along with an introduction to control design topics pertaining to discrete-time systems. Other sections introduces linear H1 and H2 theory, dissipativity analysis and synthesis, and a wide spectrum of models pertaining to electromechanical systems. Finally, the book examines the theory and mathematical analysis of multiagent systems. Researchers on robust control theory and electromechanical systems and graduate students working on robust control will benefit greatly from this book. Introduces a coherent and unified framework for studying robust control theory Provides the control-theoretic background required to read and contribute to the research literature Presents the main ideas and demonstrations of the major results of robust control theory Includes MATLAB codes to implement during research

Introduction to Time Delay Systems

Author: Emilia Fridman
Publisher: Springer
ISBN: 3319093932
Format: PDF, Kindle
Download Now
The beginning of the 21st century can be characterized as the” time-delay boom” leading to numerous important results. The purpose of this book is two-fold, to familiarize the non-expert reader with time-delay systems and to provide a systematic treatment of modern ideas and techniques for experts. This book is based on the course ”Introduction to time-delay systems” for graduate students in Engineering and Applied Mathematics that the author taught in Tel Aviv University in 2011-2012 and 2012-2013 academic years. The sufficient background to follow most of the material are the undergraduate courses in mathematics and an introduction to control. The book leads the reader from some basic classical results on time-delay systems to recent developments on Lyapunov-based analysis and design with applications to the hot topics of sampled-data and network-based control. The objective is to provide useful tools that will allow the reader not only to apply the existing methods, but also to develop new ones. It should be of interest for researchers working in the field, for graduate students in engineering and applied mathematics, and for practicing engineers. It may also be used as a textbook for a graduate course on time-delay systems.

Networked Control Systems

Author: Fei-Yue Wang
Publisher: Springer Science & Business Media
ISBN: 1848002157
Format: PDF, Kindle
Download Now
Networked control systems (NCS) confer advantages of cost reduction, system diagnosis and flexibility, minimizing wiring and simplifying the addition and replacement of individual elements; efficient data sharing makes taking globally intelligent control decisions easier with NCS. The applications of NCS range from the large scale of factory automation and plant monitoring to the smaller networks of computers in modern cars, places and autonomous robots. Networked Control Systems presents recent results in stability and robustness analysis and new developments related to networked fuzzy and optimal control. Many chapters contain case-studies, experimental, simulation or other application-related work showing how the theories put forward can be implemented. The state-of-the art research reported in this volume by an international team of contributors makes it an essential reference for researchers and postgraduate students in control, electrical, computer and mechanical engineering and computer science.

Fuzzy Control Systems Design and Analysis

Author: Kazuo Tanaka
Publisher: John Wiley & Sons
ISBN: 0471465224
Format: PDF, ePub, Mobi
Download Now
A comprehensive treatment of model-based fuzzy control systems This volume offers full coverage of the systematic framework for the stability and design of nonlinear fuzzy control systems. Building on the Takagi-Sugeno fuzzy model, authors Tanaka and Wang address a number of important issues in fuzzy control systems, including stability analysis, systematic design procedures, incorporation of performance specifications, numerical implementations, and practical applications. Issues that have not been fully treated in existing texts, such as stability analysis, systematic design, and performance analysis, are crucial to the validity and applicability of fuzzy control methodology. Fuzzy Control Systems Design and Analysis addresses these issues in the framework of parallel distributed compensation, a controller structure devised in accordance with the fuzzy model. This balanced treatment features an overview of fuzzy control, modeling, and stability analysis, as well as a section on the use of linear matrix inequalities (LMI) as an approach to fuzzy design and control. It also covers advanced topics in model-based fuzzy control systems, including modeling and control of chaotic systems. Later sections offer practical examples in the form of detailed theoretical and experimental studies of fuzzy control in robotic systems and a discussion of future directions in the field. Fuzzy Control Systems Design and Analysis offers an advanced treatment of fuzzy control that makes a useful reference for researchers and a reliable text for advanced graduate students in the field.