Machine Learning Refined

Author: Jeremy Watt
Publisher: Cambridge University Press
ISBN: 1107123526
Format: PDF, Mobi
Download Now
A new, intuitive approach to machine learning, covering fundamental concepts and real-world applications, with practical MATLAB-based exercises.

Machine Learning Refined

Author: Jeremy Watt
Publisher: Cambridge University Press
ISBN: 1316558800
Format: PDF, ePub, Mobi
Download Now
Providing a unique approach to machine learning, this text contains fresh and intuitive, yet rigorous, descriptions of all fundamental concepts necessary to conduct research, build products, tinker, and play. By prioritizing geometric intuition, algorithmic thinking, and practical real world applications in disciplines including computer vision, natural language processing, economics, neuroscience, recommender systems, physics, and biology, this text provides readers with both a lucid understanding of foundational material as well as the practical tools needed to solve real-world problems. With in-depth Python and MATLAB/OCTAVE-based computational exercises and a complete treatment of cutting edge numerical optimization techniques, this is an essential resource for students and an ideal reference for researchers and practitioners working in machine learning, computer science, electrical engineering, signal processing, and numerical optimization.

Machine Learning Refined

Author: Jeremy Watt
Publisher:
ISBN: 9781316402276
Format: PDF, Kindle
Download Now
"Providing a unique approach to machine learning, this text contains fresh and intuitive, yet rigorous, descriptions of all fundamental concepts necessary to conduct research, build products, tinker, and play. By prioritizing geometric intuition, algorithmic thinking, and practical real world applications in disciplines including computer vision, natural language processing, economics, neuroscience, recommender systems, physics, and biology, this text provides readers with both a lucid understanding of foundational material as well as the practical tools needed to solve real-world problems. With in-depth Python and MATLAB/OCTAVE-based computational exercises and a complete treatment of cutting edge numerical optimization techniques, this is an essential resource for students and an ideal reference for researchers and practitioners working in machine learning, computer science, electrical engineering, signal processing, and numerical optimization"--

Bayesian Programming

Author: Pierre Bessiere
Publisher: CRC Press
ISBN: 1439880336
Format: PDF, ePub, Docs
Download Now
Probability as an Alternative to Boolean Logic While logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in nature. Probability theory and Bayesian computing together provide an alternative framework to deal with incomplete and uncertain data. Decision-Making Tools and Methods for Incomplete and Uncertain Data Emphasizing probability as an alternative to Boolean logic, Bayesian Programming covers new methods to build probabilistic programs for real-world applications. Written by the team who designed and implemented an efficient probabilistic inference engine to interpret Bayesian programs, the book offers many Python examples that are also available on a supplementary website together with an interpreter that allows readers to experiment with this new approach to programming. Principles and Modeling Only requiring a basic foundation in mathematics, the first two parts of the book present a new methodology for building subjective probabilistic models. The authors introduce the principles of Bayesian programming and discuss good practices for probabilistic modeling. Numerous simple examples highlight the application of Bayesian modeling in different fields. Formalism and Algorithms The third part synthesizes existing work on Bayesian inference algorithms since an efficient Bayesian inference engine is needed to automate the probabilistic calculus in Bayesian programs. Many bibliographic references are included for readers who would like more details on the formalism of Bayesian programming, the main probabilistic models, general purpose algorithms for Bayesian inference, and learning problems. FAQs Along with a glossary, the fourth part contains answers to frequently asked questions. The authors compare Bayesian programming and possibility theories, discuss the computational complexity of Bayesian inference, cover the irreducibility of incompleteness, and address the subjectivist versus objectivist epistemology of probability. The First Steps toward a Bayesian Computer A new modeling methodology, new inference algorithms, new programming languages, and new hardware are all needed to create a complete Bayesian computing framework. Focusing on the methodology and algorithms, this book describes the first steps toward reaching that goal. It encourages readers to explore emerging areas, such as bio-inspired computing, and develop new programming languages and hardware architectures.

Data Clustering

Author: Charu C. Aggarwal
Publisher: CRC Press
ISBN: 1498785778
Format: PDF
Download Now
Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process—including how to verify the quality of the underlying clusters—through supervision, human intervention, or the automated generation of alternative clusters.

Understanding Machine Learning

Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press
ISBN: 1107057132
Format: PDF, Mobi
Download Now
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Statistical Signal Processing

Author: Louis L. Scharf
Publisher: Prentice Hall
ISBN:
Format: PDF, Mobi
Download Now
This book embraces the many mathematical procedures that engineers and statisticians use to draw inference from imperfect or incomplete measurements.This book presents the fundamental ideas in statistical signal processing along four distinct lines: mathematical and statistical preliminaries; decision theory; estimation theory; and time series analysis.

Algorithms and Models for Network Data and Link Analysis

Author: François Fouss
Publisher: Cambridge University Press
ISBN: 1316712516
Format: PDF, ePub
Download Now
Network data are produced automatically by everyday interactions - social networks, power grids, and links between data sets are a few examples. Such data capture social and economic behavior in a form that can be analyzed using powerful computational tools. This book is a guide to both basic and advanced techniques and algorithms for extracting useful information from network data. The content is organized around 'tasks', grouping the algorithms needed to gather specific types of information and thus answer specific types of questions. Examples include similarity between nodes in a network, prestige or centrality of individual nodes, and dense regions or communities in a network. Algorithms are derived in detail and summarized in pseudo-code. The book is intended primarily for computer scientists, engineers, statisticians and physicists, but it is also accessible to network scientists based in the social sciences. MATLAB®/Octave code illustrating some of the algorithms will be available at: http://www.cambridge.org/9781107125773.

Wave Theory of Information

Author: Massimo Franceschetti
Publisher: Cambridge University Press
ISBN: 1108546811
Format: PDF, Kindle
Download Now
Understand the relationship between information theory and the physics of wave propagation with this expert guide. Balancing fundamental theory with engineering applications, it describes the mechanism and limits for the representation and communication of information using electromagnetic waves. Information-theoretic laws relating functional approximation and quantum uncertainty principles to entropy, capacity, mutual information, rate distortion, and degrees of freedom of band-limited radiation are derived and explained. Both stochastic and deterministic approaches are explored, and applications for sensing and signal reconstruction, wireless communication, and networks of multiple transmitters and receivers are reviewed. With end-of-chapter exercises and suggestions for further reading enabling in-depth understanding of key concepts, it is the ideal resource for researchers and graduate students in electrical engineering, physics and applied mathematics looking for a fresh perspective on classical information theory.

Machine Learning Techniques Using Matlab

Author: G. Peck
Publisher: Createspace Independent Publishing Platform
ISBN: 9781976515927
Format: PDF, ePub, Docs
Download Now
Machine learning teaches computers to do what comes naturally to humans: learn from experience. Machine learning algorithms use computational methods to "learn" information directly from data without relying on a predetermined equation as a model. The algorithms adaptively improve their performance as the number of samples available for learning increases. Machine learning uses two types of techniques: supervised learning, which trains a model on known input and output data so that it can predict future outputs, and unsupervised learning, which finds hidden patterns or intrinsic structures in input data. The aim of supervised machine learning is to build a model that makes predictions based on evidence in the presence of uncertainty. A supervised learning algorithm takes a known set of input data and known responses to the data (output) and trains a model to generate reasonable predictions for the response to new data. Supervised learning uses classification and regression techniques to develop predictive models. -Classification techniques predict categorical responses, for example, whether an email is genuine or spam, or whether a tumor is cancerous or benign. Classification models classify input data into categories. Typical applications include medical imaging, image and speech recognition, and credit scoring. -Regression techniques predict continuous responses, for example, changes in temperature or fluctuations in power demand. Typical applications include electricity load forecasting and algorithmic trading. Unsupervised learning finds hidden patterns or intrinsic structures in data. It is used to draw inferences from datasets consisting of input data without labeled responses. Clustering is the most common unsupervised learning technique. It is used for exploratory data analysis to find hidden patterns or groupings in data. Applications for clustering include gene sequence analysis, market research, and object recognition.