Magnetosphere Ionosphere Coupling in the Solar System

Author: Charles R. Chappell
Publisher: John Wiley & Sons
ISBN: 1119066778
Format: PDF, ePub, Mobi
Download Now
Over a half century of exploration of the Earth’s space environment, it has become evident that the interaction between the ionosphere and the magnetosphere plays a dominant role in the evolution and dynamics of magnetospheric plasmas and fields. Interestingly, it was recently discovered that this same interaction is of fundamental importance at other planets and moons throughout the solar system. Based on papers presented at an interdisciplinary AGU Chapman Conference at Yosemite National Park in February 2014, this volume provides an intellectual and visual journey through our exploration and discovery of the paradigm-changing role that the ionosphere plays in determining the filling and dynamics of Earth and planetary environments. The 2014 Chapman conference marks the 40th anniversary of the initial magnetosphere-ionosphere coupling conference at Yosemite in 1974, and thus gives a four decade perspective of the progress of space science research in understanding these fundamental coupling processes. Digital video links to an online archive containing both the 1974 and 2014 meetings are presented throughout this volume for use as an historical resource by the international heliophysics and planetary science communities. Topics covered in this volume include: Ionosphere as a source of magnetospheric plasma Effects of the low energy ionospheric plasma on the stability and creation of the more energetic plasmas The unified global modeling of the ionosphere and magnetosphere at the Earth and other planets New knowledge of these coupled interactions for heliophysicists and planetary scientists, with a cross-disciplinary approach involving advanced measurement and modeling techniques Magnetosphere-Ionosphere Coupling in the Solar System is a valuable resource for researchers in the fields of space and planetary science, atmospheric science, space physics, astronomy, and geophysics.

Comparative Aeronomy

Author: Andrew F. Nagy
Publisher: Springer Science & Business Media
ISBN: 0387878254
Format: PDF, ePub, Mobi
Download Now
Andrew F. Nagy Originally published in the journal Space Science Reviews, Volume 139, Nos 1–4. DOI: 10. 1007/s11214-008-9353-0 © Springer Science+Business Media B. V. 2008 Keywords Aeronomy The term “aeronomy” has been used widely for many decades, but its origin has mostly been lost over the years. It was introduced by Sydney Chapman in a Letter to the Editor, entitled “Some Thoughts on Nomenclature”, in Nature in 1946 (Chapman 1946). In that letter he suggested that aeronomy should replace meteorology, writing that the word “meteor is now irrelevant and misleading”. This proposal was apparently not received with much support so in a short note in Weather in 1953 Chapman (1953)wrote: “If, despite its obvious convenience of brevity in itself and its derivatives, it does not commend itself to aeronomers, I think there is a case for modifying my proposal so that instead of the word being used to signify the study of the atmosphere in general, it should be adopted with the restricted sense of the science of the upper atmosphere, for which there is no convenient short word. ” In a chapter, he wrote in a 1960 book (Chapman 1960), he give his nal and de nitive de nition, by stating that “Aeronomy is the science of the upper region of the atmosphere, where dissociation and ionization are important”. The Workshop on “Comparative Aeronomy” was held at ISSI during the week of June 25–29, 2007.

Dawn Dusk Asymmetries in Planetary Plasma Environments

Author: Stein Haaland
Publisher: John Wiley & Sons
ISBN: 1119216516
Format: PDF, ePub, Mobi
Download Now
Dawn­Dusk Asymmetries in Planetary Plasma Environments Dawn-dusk asymmetries are ubiquitous features of the plasma environment of many of the planets in our solar system. They occur when a particular process or feature is more pronounced at one side of a planet than the other. For example, recent observations indicate that Earth's magnetopause is thicker at dawn than at dusk. Likewise, auroral breakups at Earth are more likely to occur in the pre-midnight than post-midnight sectors. Increasing availability of remotely sensed and in situ measurements of planetary ionospheres, magnetospheres and their interfaces to the solar wind have revealed significant and persistent dawn-dusk asymmetries. As yet there is no consensus regarding the source of many of these asymmetries, nor the physical mechanisms by which they are produced and maintained. Volume highlights include: A comprehensive and updated overview of current knowledge about dawn-dusk asymmetries in the plasma environments of planets in our solar system and the mechanisms behind them Valuable contributions from internationally recognized experts, covering both observations, simulations and theories discussing all important aspects of dawn-dusk asymmetries Space weather effects are caused by processes in space, mainly the magnetotail, and can be highly localized on ground. Knowing where the source, i.e., where dawn-dusk location is will allow for a better prediction of where the effects on ground will be most pronounced Covering both observational and theoretical aspects of dawn dusk asymmetries, Dawn­-Dusk Asymmetries in Planetary Plasma Environments will be a valuable resource for academic researchers in space physics, planetary science, astrophysics, physics, geophysics and earth science.

Modeling the Ionosphere Thermosphere

Author: J. D. Huba
Publisher: John Wiley & Sons
ISBN: 1118704452
Format: PDF, Kindle
Download Now
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 201. Modeling the Ionosphere-Thermosphere System brings together for the first time a detailed description of the physics of the IT system in conjunction with numerical techniques to solve the complex system of equations that describe the system, as well as issues of current interest. Volume highlights include discussions of: Physics of the ionosphere and thermosphere IT system, and the numerical methods to solve the basic equations of the IT system The physics and numerical methods to determine the global electrodynamics of the IT system The response of the IT system to forcings from below (i.e., the lower atmosphere) and from above (i.e., the magnetosphere) The physics and numerical methods to model ionospheric irregularities Data assimilation techniques, comparison of model results to data, climate variability studies, and applications to space weather Providing a clear description of the physics of this system in several tutorial-like articles, Modeling the Ionosphere-Thermosphere System is of value to the upper atmosphere science community in general. Chapters describing details of the numerical methods used to solve the equations that describe the IT system make the volume useful to both active researchers in the field and students.

Electric Currents in Geospace and Beyond

Author: Andreas Keiling
Publisher: John Wiley & Sons
ISBN: 111932579X
Format: PDF, Docs
Download Now
Electric currents are fundamental to the structure and dynamics of space plasmas, including our own near-Earth space environment, or “geospace.”This volume takes an integrated approach to the subject of electric currents by incorporating their phenomenology and physics for many regions in one volume. It covers a broad range of topics from the pioneers of electric currents in outer space, to measurement and analysis techniques, and the many types of electric currents. First volume on electric currents in space in over a decade that provides authoritative up-to-date insight on the current status of research Reviews recent advances in observations, simulation, and theory of electric currents Provides comparative overviews of electric currents in the space environments of different astronomical bodies Electric Currents in Geospace and Beyond serves as an excellent reference volume for a broad community of space scientists, astronomers, and astrophysicists who are studying space plasmas in the solar system. Read an interview with the editors to find out more: https://eos.org/editors-vox/electric-currents-in-outer-space-run-the-show

Midlatitude Ionospheric Dynamics and Disturbances

Author: Paul M. Kintner, Jr.
Publisher: John Wiley & Sons
ISBN: 1118671716
Format: PDF, ePub, Docs
Download Now
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 181. Filling the need for a 20-year lag in substantial consideration of the midlatitude ionosphere, this volume focuses on work that takes advantage of GPS and UV imaging from satellites over the past decade, two methods that have profoundly transformed our understanding of this stratum of the atmosphere. Its interdisciplinary content brings together researchers of the solar wind, magnetosphere, ionosphere, thermosphere, polar and equatorial ionospheres, and space weather. Modeling and assimilative imaging of the ionosphere and thermosphere show for the first time the complex and global impact of midlatitude ionospheric storms. The editors invited the leading experts in the following areas to contribute the chapters herein: Characterization of Midlatitude Storms Electric Field Coupling From the Heliosphere and Inner Magnetosphere Thermospheric Control of the Midlatitude Ionosphere Ionospheric Irregularities Experimental Methods and New Techniques These themes were chosen to create a path for understanding the midlatitude ionosphere. They continue to be largely valid and represent a coherent division of the subject matter. They will be critical for understanding space weather during the upcoming solar maximum. This book was inspired by the Chapman Conference of the same name held January 2007.

Handbook of the Solar Terrestrial Environment

Author: Yohsuke Kamide
Publisher: Springer Science & Business Media
ISBN: 3540463151
Format: PDF, ePub
Download Now
As a star in the universe, the Sun is constantly releas- cover a wide range of time and spatial scales, making ?? ing energy into space, as much as ?. ? ?? erg/s. Tis observations in the solar-terrestrial environment c- energy emission basically consists of three modes. Te plicated and the understanding of processes di?cult. ?rst mode of solar energy is the so-called blackbody ra- In the early days, the phenomena in each plasma diation, commonly known as sunlight, and the second region were studied separately, but with the progress mode of solar electromagnetic emission, such as X rays of research, we realized the importance of treating and UV radiation, is mostly absorbed above the Earth’s the whole chain of processes as an entity because of stratosphere. Te third mode of solar energy emission is strong interactions between various regions within in the form of particles having a wide range of energies the solar-terrestrial system. On the basis of extensive from less than ? keV to more than ? GeV. It is convenient satellite observations and computer simulations over to group these particles into lower-energy particles and thepasttwo decades, it hasbecomepossibleto analyze higher-energy particles, which are referred to as the so- speci?cally the close coupling of di?erent regions in the lar wind and solar cosmic rays, respectively. solar-terrestrial environment.

Auroral Phenomenology and Magnetospheric Processes

Author: Andreas Keiling
Publisher: John Wiley & Sons
ISBN: 1118671538
Format: PDF, ePub
Download Now
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 197. Many of the most basic aspects of the aurora remain unexplained. While in the past terrestrial and planetary auroras have been largely treated in separate books, Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets takes a holistic approach, treating the aurora as a fundamental process and discussing the phenomenology, physics, and relationship with the respective planetary magnetospheres in one volume. While there are some behaviors common in auroras of the different planets, there are also striking differences that test our basic understanding of auroral processes. The objective, upon which this monograph is focused, is to connect our knowledge of auroral morphology to the physical processes in the magnetosphere that power and structure discrete and diffuse auroras. Understanding this connection will result in a more complete explanation of the aurora and also further the goal of being able to interpret the global auroral distributions as a dynamic map of the magnetosphere. The volume synthesizes five major areas: auroral phenomenology, aurora and ionospheric electrodynamics, discrete auroral acceleration, aurora and magnetospheric dynamics, and comparative planetary aurora. Covering the recent advances in observations, simulation, and theory, this book will serve a broad community of scientists, including graduate students, studying auroras at Mars, Earth, Saturn, and Jupiter. Projected beyond our solar system, it may also be of interest for astronomers who are looking for aurora-active exoplanets.

Physics of Solar System Plasmas

Author: Thomas E. Cravens
Publisher: Cambridge University Press
ISBN: 9780521611947
Format: PDF, ePub, Docs
Download Now
A comprehensive introduction to the ionised gases of the solar-terrestrial environment.

Dynamics of the Earth s Radiation Belts and Inner Magnetosphere

Author: Danny Summers
Publisher: John Wiley & Sons
ISBN: 1118704371
Format: PDF, Mobi
Download Now
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 199. Dynamics of the Earth's Radiation Belts and Inner Magnetosphere draws together current knowledge of the radiation belts prior to the launch of Radiation Belt Storm Probes (RPSP) and other imminent space missions, making this volume timely and unique. The volume will serve as a useful benchmark at this exciting and pivotal period in radiation belt research in advance of the new discoveries that the RPSP mission will surely bring. Highlights include the following: a review of the current state of the art of radiation belt science; a complete and up-to-date account of the wave-particle interactions that control the dynamical acceleration and loss processes of particles in the Earth's radiation belts and inner magnetosphere; a discussion emphasizing the importance of the cross-energy coupling of the particle populations of the radiation belts, ring current, and plasmasphere in controlling the dynamics of the inner magnetosphere; an outline of the design and operation of future satellite missions whose objectives are to discover the dominant physical processes that control the dynamics of the Earth's radiation belts and to advance our level of understanding of radiation belt dynamics ideally to the point of predictability; and an examination of the current state of knowledge of Earth's radiation belts from past and current spacecraft missions to the inner magnetosphere. Dynamics of the Earth's Radiation Belts and Inner Magnetosphere will be a useful reference work for the specialist researcher, the student, and the general reader. In addition, the volume could be used as a supplementary text in any graduate-level course in space physics in which radiation belt physics is featured.