Martingale Methods in Financial Modelling

Author: Marek Musiela
Publisher: Springer Science & Business Media
ISBN: 3662221322
Format: PDF
Download Now
A comprehensive and self-contained treatment of the theory and practice of option pricing. The role of martingale methods in financial modeling is exposed. The emphasis is on using arbitrage-free models already accepted by the market as well as on building the new ones. Standard calls and puts together with numerous examples of exotic options such as barriers and quantos, for example on stocks, indices, currencies and interest rates are analysed. The importance of choosing a convenient numeraire in price calculations is explained. Mathematical and financial language is used so as to bring mathematicians closer to practical problems of finance and presenting to the industry useful maths tools.

Financial Modelling with Jump Processes

Author: Peter Tankov
Publisher: CRC Press
ISBN: 0203485211
Format: PDF, Kindle
Download Now
WINNER of a Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematical tools required for applications can be intimidating. Potential users often get the impression that jump and Lévy processes are beyond their reach. Financial Modelling with Jump Processes shows that this is not so. It provides a self-contained overview of the theoretical, numerical, and empirical aspects involved in using jump processes in financial modelling, and it does so in terms within the grasp of nonspecialists. The introduction of new mathematical tools is motivated by their use in the modelling process, and precise mathematical statements of results are accompanied by intuitive explanations. Topics covered in this book include: jump-diffusion models, Lévy processes, stochastic calculus for jump processes, pricing and hedging in incomplete markets, implied volatility smiles, time-inhomogeneous jump processes and stochastic volatility models with jumps. The authors illustrate the mathematical concepts with many numerical and empirical examples and provide the details of numerical implementation of pricing and calibration algorithms. This book demonstrates that the concepts and tools necessary for understanding and implementing models with jumps can be more intuitive that those involved in the Black Scholes and diffusion models. If you have even a basic familiarity with quantitative methods in finance, Financial Modelling with Jump Processes will give you a valuable new set of tools for modelling market fluctuations.

PDE and Martingale Methods in Option Pricing

Author: Andrea Pascucci
Publisher: Springer Science & Business Media
ISBN: 9788847017818
Format: PDF, Mobi
Download Now
This book offers an introduction to the mathematical, probabilistic and numerical methods used in the modern theory of option pricing. The text is designed for readers with a basic mathematical background. The first part contains a presentation of the arbitrage theory in discrete time. In the second part, the theories of stochastic calculus and parabolic PDEs are developed in detail and the classical arbitrage theory is analyzed in a Markovian setting by means of of PDEs techniques. After the martingale representation theorems and the Girsanov theory have been presented, arbitrage pricing is revisited in the martingale theory optics. General tools from PDE and martingale theories are also used in the analysis of volatility modeling. The book also contains an Introduction to Lévy processes and Malliavin calculus. The last part is devoted to the description of the numerical methods used in option pricing: Monte Carlo, binomial trees, finite differences and Fourier transform.

Financial Modelling

Author: Joerg Kienitz
Publisher: John Wiley & Sons
ISBN: 0470744898
Format: PDF, Docs
Download Now
Financial modelling Theory, Implementation and Practice with Matlab Source Jörg Kienitz and Daniel Wetterau Financial Modelling - Theory, Implementation and Practice with MATLAB Source is a unique combination of quantitative techniques, the application to financial problems and programming using Matlab. The book enables the reader to model, design and implement a wide range of financial models for derivatives pricing and asset allocation, providing practitioners with complete financial modelling workflow, from model choice, deriving prices and Greeks using (semi-) analytic and simulation techniques, and calibration even for exotic options. The book is split into three parts. The first part considers financial markets in general and looks at the complex models needed to handle observed structures, reviewing models based on diffusions including stochastic-local volatility models and (pure) jump processes. It shows the possible risk-neutral densities, implied volatility surfaces, option pricing and typical paths for a variety of models including SABR, Heston, Bates, Bates-Hull-White, Displaced-Heston, or stochastic volatility versions of Variance Gamma, respectively Normal Inverse Gaussian models and finally, multi-dimensional models. The stochastic-local-volatility Libor market model with time-dependent parameters is considered and as an application how to price and risk-manage CMS spread products is demonstrated. The second part of the book deals with numerical methods which enables the reader to use the models of the first part for pricing and risk management, covering methods based on direct integration and Fourier transforms, and detailing the implementation of the COS, CONV, Carr-Madan method or Fourier-Space-Time Stepping. This is applied to pricing of European, Bermudan and exotic options as well as the calculation of the Greeks. The Monte Carlo simulation technique is outlined and bridge sampling is discussed in a Gaussian setting and for Lévy processes. Computation of Greeks is covered using likelihood ratio methods and adjoint techniques. A chapter on state-of-the-art optimization algorithms rounds up the toolkit for applying advanced mathematical models to financial problems and the last chapter in this section of the book also serves as an introduction to model risk. The third part is devoted to the usage of Matlab, introducing the software package by describing the basic functions applied for financial engineering. The programming is approached from an object-oriented perspective with examples to propose a framework for calibration, hedging and the adjoint method for calculating Greeks in a Libor market model. Source code used for producing the results and analysing the models is provided on the author's dedicated website,

Stochastic Calculus and Financial Applications

Author: J. Michael Steele
Publisher: Springer Science & Business Media
ISBN: 1468493051
Format: PDF, ePub, Docs
Download Now
Stochastic calculus has important applications to mathematical finance. This book will appeal to practitioners and students who want an elementary introduction to these areas. From the reviews: "As the preface says, ‘This is a text with an attitude, and it is designed to reflect, wherever possible and appropriate, a prejudice for the concrete over the abstract’. This is also reflected in the style of writing which is unusually lively for a mathematics book." --ZENTRALBLATT MATH

Methods of Mathematical Finance

Author: Ioannis Karatzas
Publisher: Springer
ISBN: 1493968459
Format: PDF, Docs
Download Now
This sequel to Brownian Motion and Stochastic Calculus by the same authors develops contingent claim pricing and optimal consumption/investment in both complete and incomplete markets, within the context of Brownian-motion-driven asset prices. The latter topic is extended to a study of equilibrium, providing conditions for existence and uniqueness of market prices which support trading by several heterogeneous agents. Although much of the incomplete-market material is available in research papers, these topics are treated for the first time in a unified manner. The book contains an extensive set of references and notes describing the field, including topics not treated in the book. This book will be of interest to researchers wishing to see advanced mathematics applied to finance. The material on optimal consumption and investment, leading to equilibrium, is addressed to the theoretical finance community. The chapters on contingent claim valuation present techniques of practical importance, especially for pricing exotic options.

Financial Modeling Actuarial Valuation and Solvency in Insurance

Author: Mario V. Wüthrich
Publisher: Springer Science & Business Media
ISBN: 3642313922
Format: PDF, Mobi
Download Now
Risk management for financial institutions is one of the key topics the financial industry has to deal with. The present volume is a mathematically rigorous text on solvency modeling. Currently, there are many new developments in this area in the financial and insurance industry (Basel III and Solvency II), but none of these developments provides a fully consistent and comprehensive framework for the analysis of solvency questions. Merz and Wüthrich combine ideas from financial mathematics (no-arbitrage theory, equivalent martingale measure), actuarial sciences (insurance claims modeling, cash flow valuation) and economic theory (risk aversion, probability distortion) to provide a fully consistent framework. Within this framework they then study solvency questions in incomplete markets, analyze hedging risks, and study asset-and-liability management questions, as well as issues like the limited liability options, dividend to shareholder questions, the role of re-insurance, etc. This work embeds the solvency discussion (and long-term liabilities) into a scientific framework and is intended for researchers as well as practitioners in the financial and actuarial industry, especially those in charge of internal risk management systems. Readers should have a good background in probability theory and statistics, and should be familiar with popular distributions, stochastic processes, martingales, etc.

Risk Neutral Pricing and Financial Mathematics

Author: Peter M. Knopf
Publisher: Elsevier
ISBN: 0128017279
Format: PDF, ePub, Mobi
Download Now
Risk Neutral Pricing and Financial Mathematics: A Primer provides a foundation to financial mathematics for those whose undergraduate quantitative preparation does not extend beyond calculus, statistics, and linear math. It covers a broad range of foundation topics related to financial modeling, including probability, discrete and continuous time and space valuation, stochastic processes, equivalent martingales, option pricing, and term structure models, along with related valuation and hedging techniques. The joint effort of two authors with a combined 70 years of academic and practitioner experience, Risk Neutral Pricing and Financial Mathematics takes a reader from learning the basics of beginning probability, with a refresher on differential calculus, all the way to Doob-Meyer, Ito, Girsanov, and SDEs. It can also serve as a useful resource for actuaries preparing for Exams FM and MFE (Society of Actuaries) and Exams 2 and 3F (Casualty Actuarial Society). Includes more subjects than other books, including probability, discrete and continuous time and space valuation, stochastic processes, equivalent martingales, option pricing, term structure models, valuation, and hedging techniques Emphasizes introductory financial engineering, financial modeling, and financial mathematics Suited for corporate training programs and professional association certification programs