Martingale Methods in Financial Modelling

Author: Marek Musiela
Publisher: Springer Science & Business Media
ISBN: 3662221322
Format: PDF, Mobi
Download Now
A comprehensive and self-contained treatment of the theory and practice of option pricing. The role of martingale methods in financial modeling is exposed. The emphasis is on using arbitrage-free models already accepted by the market as well as on building the new ones. Standard calls and puts together with numerous examples of exotic options such as barriers and quantos, for example on stocks, indices, currencies and interest rates are analysed. The importance of choosing a convenient numeraire in price calculations is explained. Mathematical and financial language is used so as to bring mathematicians closer to practical problems of finance and presenting to the industry useful maths tools.

Financial Modelling with Jump Processes

Author: Peter Tankov
Publisher: CRC Press
ISBN: 1135437947
Format: PDF, ePub, Docs
Download Now
WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematical tools required for applications can be intimidating. Potential users often get the impression that jump and Lévy processes are beyond their reach. Financial Modelling with Jump Processes shows that this is not so. It provides a self-contained overview of the theoretical, numerical, and empirical aspects involved in using jump processes in financial modelling, and it does so in terms within the grasp of nonspecialists. The introduction of new mathematical tools is motivated by their use in the modelling process, and precise mathematical statements of results are accompanied by intuitive explanations. Topics covered in this book include: jump-diffusion models, Lévy processes, stochastic calculus for jump processes, pricing and hedging in incomplete markets, implied volatility smiles, time-inhomogeneous jump processes and stochastic volatility models with jumps. The authors illustrate the mathematical concepts with many numerical and empirical examples and provide the details of numerical implementation of pricing and calibration algorithms. This book demonstrates that the concepts and tools necessary for understanding and implementing models with jumps can be more intuitive that those involved in the Black Scholes and diffusion models. If you have even a basic familiarity with quantitative methods in finance, Financial Modelling with Jump Processes will give you a valuable new set of tools for modelling market fluctuations.

Risk Neutral Pricing and Financial Mathematics

Author: Peter M. Knopf
Publisher: Elsevier
ISBN: 0128017279
Format: PDF, ePub
Download Now
Risk Neutral Pricing and Financial Mathematics: A Primer provides a foundation to financial mathematics for those whose undergraduate quantitative preparation does not extend beyond calculus, statistics, and linear math. It covers a broad range of foundation topics related to financial modeling, including probability, discrete and continuous time and space valuation, stochastic processes, equivalent martingales, option pricing, and term structure models, along with related valuation and hedging techniques. The joint effort of two authors with a combined 70 years of academic and practitioner experience, Risk Neutral Pricing and Financial Mathematics takes a reader from learning the basics of beginning probability, with a refresher on differential calculus, all the way to Doob-Meyer, Ito, Girsanov, and SDEs. It can also serve as a useful resource for actuaries preparing for Exams FM and MFE (Society of Actuaries) and Exams 2 and 3F (Casualty Actuarial Society). Includes more subjects than other books, including probability, discrete and continuous time and space valuation, stochastic processes, equivalent martingales, option pricing, term structure models, valuation, and hedging techniques Emphasizes introductory financial engineering, financial modeling, and financial mathematics Suited for corporate training programs and professional association certification programs

Methods of Mathematical Finance

Author: Ioannis Karatzas
Publisher: Springer
ISBN: 1493968459
Format: PDF, Docs
Download Now
This sequel to Brownian Motion and Stochastic Calculus by the same authors develops contingent claim pricing and optimal consumption/investment in both complete and incomplete markets, within the context of Brownian-motion-driven asset prices. The latter topic is extended to a study of equilibrium, providing conditions for existence and uniqueness of market prices which support trading by several heterogeneous agents. Although much of the incomplete-market material is available in research papers, these topics are treated for the first time in a unified manner. The book contains an extensive set of references and notes describing the field, including topics not treated in the book. This book will be of interest to researchers wishing to see advanced mathematics applied to finance. The material on optimal consumption and investment, leading to equilibrium, is addressed to the theoretical finance community. The chapters on contingent claim valuation present techniques of practical importance, especially for pricing exotic options.

Financial Modelling

Author: Joerg Kienitz
Publisher: John Wiley & Sons
ISBN: 0470744898
Format: PDF, Kindle
Download Now
Financial modelling Theory, Implementation and Practice with Matlab Source Jörg Kienitz and Daniel Wetterau Financial Modelling - Theory, Implementation and Practice with MATLAB Source is a unique combination of quantitative techniques, the application to financial problems and programming using Matlab. The book enables the reader to model, design and implement a wide range of financial models for derivatives pricing and asset allocation, providing practitioners with complete financial modelling workflow, from model choice, deriving prices and Greeks using (semi-) analytic and simulation techniques, and calibration even for exotic options. The book is split into three parts. The first part considers financial markets in general and looks at the complex models needed to handle observed structures, reviewing models based on diffusions including stochastic-local volatility models and (pure) jump processes. It shows the possible risk-neutral densities, implied volatility surfaces, option pricing and typical paths for a variety of models including SABR, Heston, Bates, Bates-Hull-White, Displaced-Heston, or stochastic volatility versions of Variance Gamma, respectively Normal Inverse Gaussian models and finally, multi-dimensional models. The stochastic-local-volatility Libor market model with time-dependent parameters is considered and as an application how to price and risk-manage CMS spread products is demonstrated. The second part of the book deals with numerical methods which enables the reader to use the models of the first part for pricing and risk management, covering methods based on direct integration and Fourier transforms, and detailing the implementation of the COS, CONV, Carr-Madan method or Fourier-Space-Time Stepping. This is applied to pricing of European, Bermudan and exotic options as well as the calculation of the Greeks. The Monte Carlo simulation technique is outlined and bridge sampling is discussed in a Gaussian setting and for Lévy processes. Computation of Greeks is covered using likelihood ratio methods and adjoint techniques. A chapter on state-of-the-art optimization algorithms rounds up the toolkit for applying advanced mathematical models to financial problems and the last chapter in this section of the book also serves as an introduction to model risk. The third part is devoted to the usage of Matlab, introducing the software package by describing the basic functions applied for financial engineering. The programming is approached from an object-oriented perspective with examples to propose a framework for calibration, hedging and the adjoint method for calculating Greeks in a Libor market model. Source code used for producing the results and analysing the models is provided on the author's dedicated website, http://www.mathworks.de/matlabcentral/fileexchange/authors/246981.

Stochastic Calculus and Financial Applications

Author: J. Michael Steele
Publisher: Springer Science & Business Media
ISBN: 1468493051
Format: PDF, Docs
Download Now
Stochastic calculus has important applications to mathematical finance. This book will appeal to practitioners and students who want an elementary introduction to these areas. From the reviews: "As the preface says, ‘This is a text with an attitude, and it is designed to reflect, wherever possible and appropriate, a prejudice for the concrete over the abstract’. This is also reflected in the style of writing which is unusually lively for a mathematics book." --ZENTRALBLATT MATH

Continuous time Stochastic Control and Optimization with Financial Applications

Author: Huyên Pham
Publisher: Springer Science & Business Media
ISBN: 3540895000
Format: PDF, ePub
Download Now
Stochastic optimization problems arise in decision-making problems under uncertainty, and find various applications in economics and finance. On the other hand, problems in finance have recently led to new developments in the theory of stochastic control. This volume provides a systematic treatment of stochastic optimization problems applied to finance by presenting the different existing methods: dynamic programming, viscosity solutions, backward stochastic differential equations, and martingale duality methods. The theory is discussed in the context of recent developments in this field, with complete and detailed proofs, and is illustrated by means of concrete examples from the world of finance: portfolio allocation, option hedging, real options, optimal investment, etc. This book is directed towards graduate students and researchers in mathematical finance, and will also benefit applied mathematicians interested in financial applications and practitioners wishing to know more about the use of stochastic optimization methods in finance.

Mathematical Models of Financial Derivatives

Author: Yue-Kuen Kwok
Publisher: Springer Science & Business Media
ISBN: 9783540686880
Format: PDF, ePub
Download Now
This second edition, now featuring new material, focuses on the valuation principles that are common to most derivative securities. A wide range of financial derivatives commonly traded in the equity and fixed income markets are analysed, emphasising aspects of pricing, hedging and practical usage. This second edition features additional emphasis on the discussion of Ito calculus and Girsanovs Theorem, and the risk-neutral measure and equivalent martingale pricing approach. A new chapter on credit risk models and pricing of credit derivatives has been added. Up-to-date research results are provided by many useful exercises.

Analysis Geometry and Modeling in Finance

Author: Pierre Henry-Labordère
Publisher: CRC Press
ISBN: 9781420087000
Format: PDF, ePub, Mobi
Download Now
Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing is the first book that applies advanced analytical and geometrical methods used in physics and mathematics to the financial field. It even obtains new results when only approximate and partial solutions were previously available. Through the problem of option pricing, the author introduces powerful tools and methods, including differential geometry, spectral decomposition, and supersymmetry, and applies these methods to practical problems in finance. He mainly focuses on the calibration and dynamics of implied volatility, which is commonly called smile. The book covers the Black–Scholes, local volatility, and stochastic volatility models, along with the Kolmogorov, Schrödinger, and Bellman–Hamilton–Jacobi equations. Providing both theoretical and numerical results throughout, this book offers new ways of solving financial problems using techniques found in physics and mathematics.