Mass and Motion in General Relativity

Author: Luc Blanchet
Publisher: Springer Science & Business Media
ISBN: 9789048130153
Format: PDF, Docs
Download Now
From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes. In this volume, the world’s leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is mass and its motion within general relativity and other theories of gravity, particularly for compact bodies. Within this framework, all articles are tied together coherently, covering post-Newtonian and related methods as well as the self-force approach to the analysis of motion in curved space-time, closing with an overview of the historical development and a snapshot on the actual state of the art. All contributions reflect the fundamental role of mass in physics, from issues related to Newton’s laws, to the effect of self-force and radiation reaction within theories of gravitation, to the role of the Higgs boson in modern physics. High-precision measurements are described in detail, modified theories of gravity reproducing experimental data are investigated as alternatives to dark matter, and the fundamental problem of reconciling any theory of gravity with the physics of quantum fields is addressed. Auxiliary chapters set the framework for theoretical contributions within the broader context of experimental physics. The book is based upon the lectures of the CNRS School on Mass held in Orléans, France, in June 2008. All contributions have been anonymously refereed and, with the cooperation of the authors, revised by the editors to ensure overall consistency.


Author: Sergei M. Kopeikin
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110337495
Format: PDF, ePub
Download Now
With a wide range of prominent authors from the field of relativistic celestial mechanics, this first volume of a two-volume series consists of reviews on a multitude of advanced topics in the area, covering both classical as well as modern developments, while focusing on theoretical foundations. On the occasion of his 80-th birthday this volume honors V. A. Brumberg – one of the pioneers in modern relativistic celestial mechanics.

3 1 Formalism in General Relativity

Author: Éric Gourgoulhon
Publisher: Springer
ISBN: 3642245250
Format: PDF
Download Now
This graduate-level, course-based text is devoted to the 3+1 formalism of general relativity, which also constitutes the theoretical foundations of numerical relativity. The book starts by establishing the mathematical background (differential geometry, hypersurfaces embedded in space-time, foliation of space-time by a family of space-like hypersurfaces), and then turns to the 3+1 decomposition of the Einstein equations, giving rise to the Cauchy problem with constraints, which constitutes the core of 3+1 formalism. The ADM Hamiltonian formulation of general relativity is also introduced at this stage. Finally, the decomposition of the matter and electromagnetic field equations is presented, focusing on the astrophysically relevant cases of a perfect fluid and a perfect conductor (ideal magnetohydrodynamics). The second part of the book introduces more advanced topics: the conformal transformation of the 3-metric on each hypersurface and the corresponding rewriting of the 3+1 Einstein equations, the Isenberg-Wilson-Mathews approximation to general relativity, global quantities associated with asymptotic flatness (ADM mass, linear and angular momentum) and with symmetries (Komar mass and angular momentum). In the last part, the initial data problem is studied, the choice of spacetime coordinates within the 3+1 framework is discussed and various schemes for the time integration of the 3+1 Einstein equations are reviewed. The prerequisites are those of a basic general relativity course with calculations and derivations presented in detail, making this text complete and self-contained. Numerical techniques are not covered in this book.

General Relativity Cosmology and Astrophysics

Author: Jiří Bičák
Publisher: Springer
ISBN: 3319063499
Format: PDF, Kindle
Download Now
The articles included in this Volume represent a broad and highly qualified view on the present state of general relativity, quantum gravity, and their cosmological and astrophysical implications. As such, it may serve as a valuable source of knowledge and inspiration for experts in these fields, as well as an advanced source of information for young researchers. The occasion to gather together so many leading experts in the field was to celebrate the centenary of Einstein's stay in Prague in 1911-1912. It was in fact during his stay in Prague that Einstein started in earnest to develop his ideas about general relativity that fully developed in his paper in 1915. Approaching soon the centenary of his famous paper, this volume offers a precious overview of the path done by the scientific community in this intriguing and vibrant field in the last century, defining the challenges of the next 100 years. The content is divided into four broad parts: (i) Gravity and Prague, (ii) Classical General Relativity, (iii) Cosmology and Quantum Gravity, and (iv) Numerical Relativity and Relativistic Astrophysics.

Gravity Where Do We Stand

Author: Roberto Peron
Publisher: Springer
ISBN: 3319202243
Format: PDF, Kindle
Download Now
This book presents an overview of the current understanding of gravitation, with a focus on the current efforts to test its theory, especially general relativity. It shows how the quest for a deeper theory, which would possibly incorporate gravity in the quantum realm, is more than ever an open field. The majority of the contributions deals with the manifold facets of “experimental gravitation”, but the book goes beyond this and covers a broad range of subjects from the foundations of gravitational theories to astrophysics and cosmology. The book is divided into three parts. The first part deals with foundations and Solar System tests. An introductory pedagogical chapter reviews first Newtonian gravitational theory, special relativity, the equivalence principle and the basics of general relativity. Then it focuses on approximation methods, mainly the post-Newtonian formalism and the relaxed Einstein equations, with a discussion on how they are used in treating experimental tests and in the problem of generation and detection of gravitational waves. Following this is a set of chapters describing the most recent experiments, techniques and observations on the testing of gravity theories in the laboratory, around the Earth and in the Solar System. The second part is dedicated to astrophysical topics deeply linked with the study of gravitation, namely binary pulsars and the perspective of direct detection of gravitational waves. These cases are paradigmatic in that the gravitational signals act at the same time as messengers helping us to understand the properties of important and wide classes of astrophysical objects. The third part explores the many open issues in current knowledge of gravitation machinery, especially related to astrophysical and cosmological problems and the way possible solutions to them impact the quest for a quantum theory of gravitation and unified theory. Included is a selection of the many possible paths, giving a hint to the subtleties one is called upon. Whenever possible, a close link to observational constraints and possible experimental tests is provided. In selecting the topics of the various contributions, particular care has been devoted to ensure their fit in a coherent representation of our understanding of gravitational phenomena. The book is aimed at graduate level students and will form a valuable reference for those working in the field.

Essential Relativity

Author: W. Rindler
Publisher: Springer
ISBN: 1475711352
Format: PDF, Mobi
Download Now
This book is an attempt to bring the full range of relativity theory within reach of advanced undergraduates, while containing enough new material and simplifications of old arguments so as not to bore the expert teacher. Roughly equal coverage is given tospecial relativity, general relativity, and cosmology. With many judicious omissions it can be taught in one semester, but it would better serve as the basis of a year's work. It is my hope, anyway, that its level and style of presentation may appeal also to wider c1asses of readers unrestricted by credit considerations. General relativity, the modern theory of gravitation in which free particles move along "straightest possible" lines in curved spacetime, and cosmology, with its dynamics for the whole possibly curved uni verse, not only seem necessary for a scientist's balanced view of the world, but offer some of the greatest intellectual thrills of modern physics. Nevertheless, considered luxuries, they are usu ally squeezed out of the graduate curriculum by the pressure of specialization. Special relativity escapes this tag with a ven geance, and tends to be taught as a pure service discipline, with too little emphasis on its startling ideas. What better time, there fore, to enjoy these subjects for their own sake than as an und- v vi PREFACE graduate? In spite of its forbidding mathematical reputation, even general relativity is accessible at that stage.

An Introduction to Relativity

Author: Jayant V. Narlikar
Publisher: Cambridge University Press
ISBN: 1139484680
Format: PDF, Kindle
Download Now
General relativity is now an essential part of undergraduate and graduate courses in physics, astrophysics and applied mathematics. This simple, user-friendly introduction to relativity is ideal for a first course in the subject. Beginning with a comprehensive but simple review of special relativity, the book creates a framework from which to launch the ideas of general relativity. After describing the basic theory, it moves on to describe important applications to astrophysics, black hole physics, and cosmology. Several worked examples, and numerous figures and images, help students appreciate the underlying concepts. There are also 180 exercises which test and develop students' understanding of the subject. The textbook presents all the necessary information and discussion for an elementary approach to relativity. Password-protected solutions to the exercises are available to instructors at

Physik Manga

Author: Hideo Nitta
Publisher: Springer-Verlag
ISBN: 9783834809827
Format: PDF, ePub, Mobi
Download Now
Physik ist trocken und macht keinen Spaß? Falsch! Mit diesem Manga lernt man die Grundlagen der Mechanik kennen, kann sie in zahlreichen Aufgaben anwenden und anhand der Lösungen seinen Lernfortschritt überprüfen – und hat auch noch eine Menge Spaß dabei! Der Inhalt Prolog: Nervt Dich Physik? - Actio und Reactio - Drehmomente - Kraft und Bewegung - Energie Die Zielgruppe Studierende, Schüler und Mangafans, die einen spannenden Einstieg in die Mechanik suchen Die Autoren Hideo Nitta (Autor) Keita Takatsu (Illustrator) TREND-PRO Co,. Ltd. (Produzent)

Introduction to Black Hole Physics

Author: Valeri P. Frolov
Publisher: Oxford University Press
ISBN: 0199692297
Format: PDF, Mobi
Download Now
What is a black hole? How many of them are in our Universe? Can black holes be created in a laboratory or in particle colliders? Can objects similar to black holes be used for space and time travel? This book discusses these and many other questions providing the reader with the tools required to explore the Black Hole Land independently.

The End of Time

Author: Julian Barbour
Publisher: Oxford University Press
ISBN: 9780195145922
Format: PDF, ePub, Docs
Download Now
In a revolutionary new book, a theoretical physicist attacks the foundations of modern scientific theory, including the notion of time, as he shares evidence of a timeless universe, sheds light on the dichotomy between classical and quantum physics, and offers insight into some of the mysteries of modern science. Reprint.