Mathematical Aspects of Quantum Field Theory

Author: Edson de Faria
Publisher: Cambridge University Press
ISBN: 1139489801
Format: PDF, ePub, Docs
Download Now
Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.

Towards the Mathematics of Quantum Field Theory

Author: Frederic Paugam
Publisher: Springer Science & Business Media
ISBN: 3319045644
Format: PDF, ePub, Docs
Download Now
This ambitious and original book sets out to introduce to mathematicians (even including graduate students ) the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in use. This in turn promotes the interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, though mathematicians are the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second part presents a large family of examples of classical field theories, both from experimental and theoretical physics, while the third part provides an introduction to quantum field theory, presents various renormalization methods, and discusses the quantization of factorization algebras.

Supermanifolds

Author: Bryce DeWitt
Publisher: Cambridge University Press
ISBN: 9780521423779
Format: PDF, ePub, Docs
Download Now
This updated and expanded second edition of an established text presents a detailed exposition of the modern theory of supermanifolds, including a rigorous account of the superanalogs of all the basic structures of ordinary manifold theory.

Foundations of Ergodic Theory

Author: Marcelo Viana
Publisher: Cambridge University Press
ISBN: 1107126967
Format: PDF, ePub, Docs
Download Now
Self-contained introductory textbook suitable for a variety of one- or two-semester courses. Rich with examples, applications and exercises.

Topology Geometry and Quantum Field Theory

Author: Graeme Segal
Publisher: Cambridge University Press
ISBN: 9780521540490
Format: PDF, ePub, Mobi
Download Now
The symposium held in honour of the 60th birthday of Graeme Segal brought together leading physicists and mathematicians. Its topics were centred around string theory, M-theory, and quantum gravity on the one hand, and K-theory, elliptic cohomology, quantum cohomology and string topology on the other. Geometry and quantum physics developed in parallel since the recognition of the central role of non-abelian gauge theory in elementary particle physics in the late seventies and the emerging study of super-symmetry and string theory. With its selection of survey and research articles these proceedings fulfil the dual role of reporting on developments in the field and defining directions for future research. For the first time Graeme Segal's manuscript 'The definition of Conformal Field Theory' is published, which has been greatly influential over more than ten years. An introduction by the author puts it into the present context.

Geometric Analysis

Author: Peter Li
Publisher: Cambridge University Press
ISBN: 1107020646
Format: PDF, ePub, Mobi
Download Now
Basic techniques for researchers interested in the field of geometric analysis.

Basic Category Theory

Author: Tom Leinster
Publisher: Cambridge University Press
ISBN: 1139992856
Format: PDF, ePub, Docs
Download Now
At the heart of this short introduction to category theory is the idea of a universal property, important throughout mathematics. After an introductory chapter giving the basic definitions, separate chapters explain three ways of expressing universal properties: via adjoint functors, representable functors, and limits. A final chapter ties all three together. The book is suitable for use in courses or for independent study. Assuming relatively little mathematical background, it is ideal for beginning graduate students or advanced undergraduates learning category theory for the first time. For each new categorical concept, a generous supply of examples is provided, taken from different parts of mathematics. At points where the leap in abstraction is particularly great (such as the Yoneda lemma), the reader will find careful and extensive explanations. Copious exercises are included.

Quantum Field Theory

Author: G. B. Folland
Publisher: American Mathematical Soc.
ISBN: 0821847058
Format: PDF, Mobi
Download Now
Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theory, with emphasis on quantum electrodynamics. The final two chapters present the functional integral approach and the elements of gauge field theory, including the Salam-Weinberg model of electromagnetic and weak interactions.

Quantum Theory for Mathematicians

Author: Brian C. Hall
Publisher: Springer Science & Business Media
ISBN: 1461471168
Format: PDF, Kindle
Download Now
Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.

Quantum Field Theory Supersymmetry and Enumerative Geometry

Author: Daniel S. Freed
Publisher: American Mathematical Soc.
ISBN: 0821834312
Format: PDF, Mobi
Download Now
Each summer the IAS/Park City Mathematics Institute Graduate Summer School gathers some of the best researchers and educators in a particular field to present diverse sets of lectures. This volume presents three weeks of lectures given at the Summer School on Quantum Field Theory, Super symmetry, and Enumerative Geometry, three very active research areas in mathematics and theoretical physics. With this volume, the Park City Mathematics Institute returns to the general topic of the first institute: the interplay between quantum field theory and mathematics.Two major themes at this institute were super symmetry and algebraic geometry, particularly enumerative geometry. The volume contains two lecture series on methods of enumerative geometry that have their roots in QFT. The first series covers the Schubert calculus and quantum cohomology. The second discusses methods from algebraic geometry for computing Gromov-Witten invariants. There are also three sets of lectures of a more introductory nature: an overview of classical field theory and super symmetry, an introduction to supermanifolds, and an introduction to general relativity. This volume is recommended for independent study and is suitable for graduate students and researchers interested in geometry and physics.