Mathematical Methods for Wave Phenomena

Author: Norman Bleistein
Publisher: Academic Press
ISBN: 0080916953
Format: PDF, ePub
Download Now
Computer Science and Applied Mathematics: Mathematical Methods for Wave Phenomena focuses on the methods of applied mathematics, including equations, wave fronts, boundary value problems, and scattering problems. The publication initially ponders on first-order partial differential equations, Dirac delta function, Fourier transforms, asymptotics, and second-order partial differential equations. Discussions focus on prototype second-order equations, asymptotic expansions, asymptotic expansions of Fourier integrals with monotonic phase, method of stationary phase, propagation of wave fronts, and variable index of refraction. The text then examines wave equation in one space dimension, as well as initial boundary value problems, characteristics for the wave equation in one space dimension, and asymptotic solution of the Klein-Gordon equation. The manuscript offers information on wave equation in two and three dimensions and Helmholtz equation and other elliptic equations. Topics include energy integral, domain of dependence, and uniqueness, scattering problems, Green's functions, and problems in unbounded domains and the Sommerfeld radiation condition. The asymptotic techniques for direct scattering problems and the inverse methods for reflector imaging are also elaborated. The text is a dependable reference for computer science experts and mathematicians pursuing studies on the mathematical methods of wave phenomena.

Wave Propagation in Solids and Fluids

Author: Julian L. Davis
Publisher: Springer Science & Business Media
ISBN: 1461238862
Format: PDF, Mobi
Download Now
The purpose of this volume is to present a clear and systematic account of the mathematical methods of wave phenomena in solids, gases, and water that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical techniques, and on showing how these mathematical concepts can be effective in unifying the physics of wave propagation in a variety of physical settings: sound and shock waves in gases, water waves, and stress waves in solids. Nonlinear effects and asymptotic phenomena will be discussed. Wave propagation in continuous media (solid, liquid, or gas) has as its foundation the three basic conservation laws of physics: conservation of mass, momentum, and energy, which will be described in various sections of the book in their proper physical setting. These conservation laws are expressed either in the Lagrangian or the Eulerian representation depending on whether the boundaries are relatively fixed or moving. In any case, these laws of physics allow us to derive the "field equations" which are expressed as systems of partial differential equations. For wave propagation phenomena these equations are said to be "hyperbolic" and, in general, nonlinear in the sense of being "quasi linear" . We therefore attempt to determine the properties of a system of "quasi linear hyperbolic" partial differential equations which will allow us to calculate the displacement, velocity fields, etc.

Mathematical methods for wave propagation in science and engineering

Author: Mario Durán
Publisher: Ediciones UC
ISBN: 9561413140
Format: PDF, ePub
Download Now
This series of books deals with the mathematical modeling and computational simulation of complex wave propagation phenomena in science and engineering. This first volume of the series introduces the basic mathematical and physical fundamentals, and it is mainly intended as a reference guide and a general survey for scientists and engineers. It presents a broad and practical overview of the involved foundations, being useful as much in industrial research, development, and innovation activities, as in academic labors.

Wave Propagation in Electromagnetic Media

Author: Julian L. Davis
Publisher: Springer Science & Business Media
ISBN: 1461232848
Format: PDF, ePub, Mobi
Download Now
This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical tech niques, and on showing how these methods of mathematical physics can be effective in unifying the physics of wave propagation in electromagnetic media. Chapter 1 presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations, and their appli cations to electromagnetic wave propagation under a variety of conditions.

Mathematics of Wave Propagation

Author: Julian L. Davis
Publisher: Princeton University Press
ISBN: 9780691026435
Format: PDF
Download Now
Earthquakes, a plucked string, ocean waves crashing on the beach, the sound waves that allow us to recognize known voices. Waves are everywhere, and the propagation and classical properties of these apparently disparate phenomena can be described by the same mathematical methods: variational calculus, characteristics theory, and caustics. Taking a medium-by-medium approach, Julian Davis explains the mathematics needed to understand wave propagation in inviscid and viscous fluids, elastic solids, viscoelastic solids, and thermoelastic media, including hyperbolic partial differential equations and characteristics theory, which makes possible geometric solutions to nonlinear wave problems. The result is a clear and unified treatment of wave propagation that makes a diverse body of mathematics accessible to engineers, physicists, and applied mathematicians engaged in research on elasticity, aerodynamics, and fluid mechanics. This book will particularly appeal to those working across specializations and those who seek the truly interdisciplinary understanding necessary to fully grasp waves and their behavior. By proceeding from concrete phenomena (e.g., the Doppler effect, the motion of sinusoidal waves, energy dissipation in viscous fluids, thermal stress) rather than abstract mathematical principles, Davis also creates a one-stop reference that will be prized by students of continuum mechanics and by mathematicians needing information on the physics of waves.

Mathematics of Multidimensional Seismic Imaging Migration and Inversion

Author: N. Bleistein
Publisher: Springer Science & Business Media
ISBN: 9780387950617
Format: PDF, ePub
Download Now
For more than 80 years, the oil and gas industry has used seismic methods to construct images and determine physical characteristics of rocks that can yield information about oil and gas bearing structures in the earth. This book presents the different seismic data processing methods, also known as seismic "migration," in a unified mathematical way. The book serves as a bridge between the applied math and geophysics communities by presenting geophysicists with a practical introduction to advanced engineering mathematics, while presenting mathematicians with a window into the world of the mathematically sophisticated geophysicist.

Mathematical modeling of wave phenomena

Author: Börje Nilsson
Publisher: Springer Verlag
ISBN:
Format: PDF
Download Now
This conference series intends to illuminate the relationship between different types of waves. This second conference focused primarily on classical wave modeling of acoustic waves in solids and fluids, electromagnetic waves, as well as elastic wave modeling, and both direct and inverse problems are addressed. Topics included are: (1) Classical linear wave propagation modeling, analysis and computation: general, electromagnetic applications, acoustics of fluids, acoustics of solids; (2) classical nonlinear wave propagation modeling, analysis, and computation; (3) inverse scattering modeling: gneral and electromagnetic imaging, wood imaging, seismic imaging; (4) quantum and statistical mechanics; (5) signal processing and analysis.

Asymptotic Methods in Nonlinear Wave Phenomena

Author: Tommaso Ruggeri
Publisher: World Scientific
ISBN: 9812707824
Format: PDF, ePub, Docs
Download Now
This book brings together several contributions from leading experts in the field of nonlinear wave propagation. This field, which during the last three decades has seen important breakthroughs from the theoretical point of view, has recently acquired increased relevance due to advances in the technology of fluids e.g. at microscale or nanoscale and the recognition of crucial applications to the understanding of biological phenomena.Nonlinear wave theory requires the use of disparate approaches, including formal and rigorous asymptotic methods, Lie group theory, energy methods, numerical analysis, and bifurcation theory. This book presents a unique blend in which different aspects of the theory are enlightened and several real-life applications are investigated. The book will be a valuable resource for applied scientists interested in some of the most recent advances in the theory and in the applications of wave propagation, shock formation, nonequilibrium thermodynamics and energy methods.

Hyperbolic Partial Differential Equations and Wave Phenomena

Author: Mitsuru Ikawa
Publisher: American Mathematical Soc.
ISBN: 9780821810217
Format: PDF, Kindle
Download Now
The familiar wave equation is the most fundamental hyperbolic partial differential equation. Other hyperbolic equations, both linear and nonlinear, exhibit many wave-like phenomena. The primary theme of this book is the mathematical investigation of such wave phenomena. The exposition begins with derivations of some wave equations, including waves in an elastic body, such as those observed in connection with earthquakes. Certain existence results are proved early on, allowing the later analysis to concentrate on properties of solutions. The existence of solutions is established using methods from functional analysis. Many of the properties are developed using methods of asymptotic solutions. The last chapter contains an analysis of the decay of the local energy of solutions. This analysis shows, in particular, that in a connected exterior domain, disturbances gradually drift into the distance and the effect of a disturbance in a bounded domain becomes small after sufficient time passes. The book is geared toward a wide audience interested in PDEs. Prerequisite to the text are some real analysis and elementary functional analysis. It would be suitable for use as a text in PDEs or mathematical physics at the advanced undergraduate and graduate level.