Mathematical Methods for Wave Phenomena

Author: Norman Bleistein
Publisher: Academic Press
ISBN: 0080916953
Format: PDF, Mobi
Download Now
Computer Science and Applied Mathematics: Mathematical Methods for Wave Phenomena focuses on the methods of applied mathematics, including equations, wave fronts, boundary value problems, and scattering problems. The publication initially ponders on first-order partial differential equations, Dirac delta function, Fourier transforms, asymptotics, and second-order partial differential equations. Discussions focus on prototype second-order equations, asymptotic expansions, asymptotic expansions of Fourier integrals with monotonic phase, method of stationary phase, propagation of wave fronts, and variable index of refraction. The text then examines wave equation in one space dimension, as well as initial boundary value problems, characteristics for the wave equation in one space dimension, and asymptotic solution of the Klein-Gordon equation. The manuscript offers information on wave equation in two and three dimensions and Helmholtz equation and other elliptic equations. Topics include energy integral, domain of dependence, and uniqueness, scattering problems, Green's functions, and problems in unbounded domains and the Sommerfeld radiation condition. The asymptotic techniques for direct scattering problems and the inverse methods for reflector imaging are also elaborated. The text is a dependable reference for computer science experts and mathematicians pursuing studies on the mathematical methods of wave phenomena.

Mathematical methods for wave propagation in science and engineering

Author: Mario Durán
Publisher: Ediciones UC
ISBN: 9561413140
Format: PDF, Docs
Download Now
This series of books deals with the mathematical modeling and computational simulation of complex wave propagation phenomena in science and engineering. This first volume of the series introduces the basic mathematical and physical fundamentals, and it is mainly intended as a reference guide and a general survey for scientists and engineers. It presents a broad and practical overview of the involved foundations, being useful as much in industrial research, development, and innovation activities, as in academic labors.

Mathematics of Multidimensional Seismic Imaging Migration and Inversion

Author: N. Bleistein
Publisher: Springer Science & Business Media
ISBN: 9780387950617
Format: PDF, ePub
Download Now
For more than 80 years, the oil and gas industry has used seismic methods to construct images and determine physical characteristics of rocks that can yield information about oil and gas bearing structures in the earth. This book presents the different seismic data processing methods, also known as seismic "migration," in a unified mathematical way. The book serves as a bridge between the applied math and geophysics communities by presenting geophysicists with a practical introduction to advanced engineering mathematics, while presenting mathematicians with a window into the world of the mathematically sophisticated geophysicist.

Asymptotic Methods in Nonlinear Wave Phenomena

Author: Tommaso Ruggeri
Publisher: World Scientific
ISBN: 9812707824
Format: PDF, Mobi
Download Now
This book brings together several contributions from leading experts in the field of nonlinear wave propagation. This field, which during the last three decades has seen important breakthroughs from the theoretical point of view, has recently acquired increased relevance due to advances in the technology of fluids e.g. at microscale or nanoscale and the recognition of crucial applications to the understanding of biological phenomena.Nonlinear wave theory requires the use of disparate approaches, including formal and rigorous asymptotic methods, Lie group theory, energy methods, numerical analysis, and bifurcation theory. This book presents a unique blend in which different aspects of the theory are enlightened and several real-life applications are investigated. The book will be a valuable resource for applied scientists interested in some of the most recent advances in the theory and in the applications of wave propagation, shock formation, nonequilibrium thermodynamics and energy methods.

Wave Propagation in Electromagnetic Media

Author: Julian L. Davis
Publisher: Springer Science & Business Media
ISBN: 1461232848
Format: PDF, Mobi
Download Now
This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical tech niques, and on showing how these methods of mathematical physics can be effective in unifying the physics of wave propagation in electromagnetic media. Chapter 1 presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations, and their appli cations to electromagnetic wave propagation under a variety of conditions.

Wave Propagation in Solids and Fluids

Author: Julian L. Davis
Publisher: Springer Science & Business Media
ISBN: 1461238862
Format: PDF
Download Now
The purpose of this volume is to present a clear and systematic account of the mathematical methods of wave phenomena in solids, gases, and water that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical techniques, and on showing how these mathematical concepts can be effective in unifying the physics of wave propagation in a variety of physical settings: sound and shock waves in gases, water waves, and stress waves in solids. Nonlinear effects and asymptotic phenomena will be discussed. Wave propagation in continuous media (solid, liquid, or gas) has as its foundation the three basic conservation laws of physics: conservation of mass, momentum, and energy, which will be described in various sections of the book in their proper physical setting. These conservation laws are expressed either in the Lagrangian or the Eulerian representation depending on whether the boundaries are relatively fixed or moving. In any case, these laws of physics allow us to derive the "field equations" which are expressed as systems of partial differential equations. For wave propagation phenomena these equations are said to be "hyperbolic" and, in general, nonlinear in the sense of being "quasi linear" . We therefore attempt to determine the properties of a system of "quasi linear hyperbolic" partial differential equations which will allow us to calculate the displacement, velocity fields, etc.

Mathematical Techniques for Wave Interaction with Flexible Structures

Author: Trilochan Sahoo
Publisher: CRC Press
ISBN: 1466506040
Format: PDF, Docs
Download Now
Mathematical Techniques for Wave Interaction with Flexible Structures is a thoughtful compilation of the various mathematical techniques used to deal with wave structure interaction problems. The book emphasizes unique determination of the solution for a class of physical problems associated with Laplace- or Helmholtz-type equations satisfying higher order boundary conditions with the applications of the theory of ordinary and partial differential equations, Fourier analysis, and more. Features: Provides a focused mathematical treatment for gravity wave interaction with floating and submerged flexible structures Highlights solution methods for a special class of boundary value problems in wave structure interaction Introduces and expands upon differential equations and the fundamentals of wave structure interaction problems This is an ideal handbook for naval architects, ocean engineers, and geophysicists dealing with the design of floating and/or flexible marine structures. The book’s underlying mathematical tools can be easily extended to deal with physical problems in the area of acoustics, electromagnetic waves, wave propagation in elastic media, and solid‐state physics. Designed for both the classroom and independent study, Mathematical Techniques for Wave Interaction with Flexible Structures enables readers to appreciate and apply the mathematical tools of wave structure interaction research to their own work.

Stochastic Wave Propagation

Author: K. Sobczyk
Publisher: Elsevier
ISBN: 0444598049
Format: PDF, ePub, Docs
Download Now
This is a concise, unified exposition of the existing methods of analysis of linear stochastic waves with particular reference to the most recent results. Both scalar and vector waves are considered. Principal attention is concentrated on wave propagation in stochastic media and wave scattering at stochastic surfaces. However, discussion extends also to various mathematical aspects of stochastic wave equations and problems of modelling stochastic media.

Computational Ocean Acoustics

Author: Finn B. Jensen
Publisher: Springer Science & Business Media
ISBN: 9781563962097
Format: PDF, Kindle
Download Now
"Many practical suggestions and tips; the examples are meaningful and the illustrations are effective....Destined to become a classic reference that any serious practitioner of ocean acoustics cannot afford to ignore." Revue de livre Authored by four internationally renowned scientists, this volume covers 20 years of progress in computational ocean acoustics and presents the latest numerical techniques used in solving the wave equation in heterogeneous fluid-solid media. The authors detail various computational schemes and illustrate many of the fundamental propagation features via 2-D color displays.