Mathematical Modeling

Author: Sandip Banerjee
Publisher: CRC Press
ISBN: 1439854513
Format: PDF, Mobi
Download Now
Almost every year, a new book on mathematical modeling is published, so, why another? The answer springs directly from the fact that it is very rare to find a book that covers modeling with all types of differential equations in one volume. Until now. Mathematical Modeling: Models, Analysis and Applications covers modeling with all kinds of differential equations, namely ordinary, partial, delay, and stochastic. The book also contains a chapter on discrete modeling, consisting of differential equations, making it a complete textbook on this important skill needed for the study of science, engineering, and social sciences. More than just a textbook, this how-to guide presents tools for mathematical modeling and analysis. It offers a wide-ranging overview of mathematical ideas and techniques that provide a number of effective approaches to problem solving. Topics covered include spatial, delayed, and stochastic modeling. The text provides real-life examples of discrete and continuous mathematical modeling scenarios. MATLAB® and Mathematica® are incorporated throughout the text. The examples and exercises in each chapter can be used as problems in a project. Since mathematical modeling involves a diverse range of skills and tools, the author focuses on techniques that will be of particular interest to engineers, scientists, and others who use models of discrete and continuous systems. He gives students a foundation for understanding and using the mathematics that is the basis of computers, and therefore a foundation for success in engineering and science streams.

Mathematical Modeling

Author: Sandip Banerjee
Publisher: CRC Press
ISBN: 1482229161
Format: PDF, Mobi
Download Now
Almost every year, a new book on mathematical modeling is published, so, why another? The answer springs directly from the fact that it is very rare to find a book that covers modeling with all types of differential equations in one volume. Until now. Mathematical Modeling: Models, Analysis and Applications covers modeling with all kinds of differential equations, namely ordinary, partial, delay, and stochastic. The book also contains a chapter on discrete modeling, consisting of differential equations, making it a complete textbook on this important skill needed for the study of science, engineering, and social sciences. More than just a textbook, this how-to guide presents tools for mathematical modeling and analysis. It offers a wide-ranging overview of mathematical ideas and techniques that provide a number of effective approaches to problem solving. Topics covered include spatial, delayed, and stochastic modeling. The text provides real-life examples of discrete and continuous mathematical modeling scenarios. MATLAB® and Mathematica® are incorporated throughout the text. The examples and exercises in each chapter can be used as problems in a project. Since mathematical modeling involves a diverse range of skills and tools, the author focuses on techniques that will be of particular interest to engineers, scientists, and others who use models of discrete and continuous systems. He gives students a foundation for understanding and using the mathematics that is the basis of computers, and therefore a foundation for success in engineering and science streams.

Concepts of Mathematical Modeling

Author: Walter J. Meyer
Publisher: Courier Corporation
ISBN: 0486137244
Format: PDF, Docs
Download Now
This text features examinations of classic models and a variety of applications. Each section is preceded by an abstract and statement of prerequisites. Includes exercises. 1984 edition.

Guide to Mathematical Modelling

Author: Dilwyn Edwards
Publisher: Macmillan International Higher Education
ISBN: 1349100420
Format: PDF
Download Now
The authors' enthusiasm for their subject is eloquently conveyed in this book, and draws the reader very quickly into active investigation of the problems posed. By providing plenty of modelling examples from a wide variety of fields - most of which are familiar from everyday life - the book shows how to apply mathematical ideas to situations which would not previously have been considered to be 'mathematical' in character.

An Introduction to Mathematical Modeling

Author: Edward A. Bender
Publisher: Courier Corporation
ISBN: 0486137120
Format: PDF, ePub, Docs
Download Now
Accessible text features over 100 reality-based examples pulled from the science, engineering, and operations research fields. Prerequisites: ordinary differential equations, continuous probability. Numerous references. Includes 27 black-and-white figures. 1978 edition.

Principles of Mathematical Modeling

Author: Clive L. Dym
Publisher: Academic Press
ISBN: 9780122265518
Format: PDF
Download Now
This book provides a readable and informative introduction to the development and application of mathematical models in science and engineering. The first half of the book begins with a clearly defined set of modeling principles, and then introduces a set of foundational tools (dimensional analysis, scaling techniques, and approximation and validation techniques). The second half then applies these foundational tools to a broad variety of subjects, including exponenttial growth and decay in fields ranging from biology to economics, traffic flow, free and forced vibration of mechanical and other systems, and optimization problems in biology, structures, and social decision making. An extensive collection of more than 360 problems offer ample opportunity in both a formal course and for the individual reader. (Midwest).

Mathematical Modeling

Author: Mark M. Meerschaert
Publisher: Elsevier
ISBN: 9780123708571
Format: PDF
Download Now
Mathematical Modeling 3e is a general introduction to an increasingly crucial topic for today's mathematicians. Unlike textbooks focused on one kind of mathematical model, this book covers the broad spectrum of modeling problems, from optimization to dynamical systems to stochastic processes. Mathematical modeling is the link between mathematics and the rest of the world. Meerschaert shows how to refine a question, phrasing it in precise mathematical terms. Then he encourages students to reverse the process, translating the mathematical solution back into a comprehensible, useful answer to the original question. This textbook mirrors the process professionals must follow in solving complex problems. Each chapter in this book is followed by a set of challenging exercises. These exercises require significant effort on the part of the student, as well as a certain amount of creativity. Meerschaert did not invent the problems in this book--they are real problems, not designed to illustrate the use of any particular mathematical technique. Meerschaert's emphasis on principles and general techniques offers students the mathematical background they need to model problems in a wide range of disciplines. This new edition will be accompanied by expanded and enhanced on-line support for instructors. MATLAB material will be added to complement existing support for Maple, Mathematica, and other software packages, and the solutions manual will be provided both in hard copy and on the web. * Increased support for instructors, including MATLAB material as well as other on-line resources * New sections on time series analysis and diffusion models * Additional problems with international focus such as whale and dolphin populations, plus updated optimization problems

Mathematical and Experimental Modeling of Physical and Biological Processes

Author: H.T. Banks
Publisher: CRC Press
ISBN: 9781420073386
Format: PDF, Mobi
Download Now
Through several case study problems from industrial and scientific research laboratory applications, Mathematical and Experimental Modeling of Physical and Biological Processes provides students with a fundamental understanding of how mathematics is applied to problems in science and engineering. For each case study problem, the authors discuss why a model is needed and what goals can be achieved with the model. Exploring what mathematics can reveal about applications, the book focuses on the design of appropriate experiments to validate the development of mathematical models. It guides students through the modeling process, from empirical observations and formalization of properties to model analysis and interpretation of results. The authors also describe the hardware and software tools used to design the experiments so faculty/students can duplicate them. Integrating real-world applications into the traditional mathematics curriculum, this textbook deals with the formulation and analysis of mathematical models in science and engineering. It gives students an appreciation of the use of mathematics and encourages them to further study the applied topics. Real experimental data for projects can be downloaded from CRC Press Online.

The Nature of Mathematical Modeling

Author: Neil A. Gershenfeld
Publisher: Cambridge University Press
ISBN: 9780521570954
Format: PDF
Download Now
This book first covers exact and approximate analytical techniques (ordinary differential and difference equations, partial differential equations, variational principles, stochastic processes); numerical methods (finite differences for ODE's and PDE's, finite elements, cellular automata); model inference based on observations (function fitting, data transforms, network architectures, search techniques, density estimation); as well as the special role of time in modeling (filtering and state estimation, hidden Markov processes, linear and nonlinear time series). Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area, providing an orientation to what they can (and cannot) do, enough background to use them to solve typical problems, and pointers to access the literature for particular applications.

Mathematical Modeling for System Analysis in Agricultural Research

Author: K. Vohnout
Publisher: Elsevier
ISBN: 9780080535883
Format: PDF, Mobi
Download Now
This book provides a clear picture of the use of applied mathematics as a tool for improving the accuracy of agricultural research. For decades, statistics has been regarded as the fundamental tool of the scientific method. With new breakthroughs in computers and computer software, it has become feasible and necessary to improve the traditional approach in agricultural research by including additional mathematical modeling procedures. The difficulty with the use of mathematics for agricultural scientists is that most courses in applied mathematics have been designed for engineering students. This publication is written by a professional in animal science targeting professionals in the biological, namely agricultural and animal scientists and graduate students in agricultural and animal sciences. The only prerequisite for the reader to understand the topics of this book is an introduction to college algebra, calculus and statistics. This is a manual of procedures for the mathematical modeling of agricultural systems and for the design and analyses of experimental data and experimental tests. It is a step-by-step guide for mathematical modeling of agricultural systems, starting with the statement of the research problem and up to implementing the project and running system experiments.