Mathematical Modeling of Food Processing

Author: Mohammed M. Farid
Publisher: CRC Press
ISBN: 9781420053548
Format: PDF, Docs
Download Now
Written by international experts from industry, research centers, and academia, Mathematical Modeling of Food Processing discusses the physical and mathematical analysis of transport phenomena associated with food processing. The models presented describe many of the important physical and biological transformations that occur in food during processing. After introducing the fundamentals of heat, mass, and momentum transfer as well as computational fluid dynamics (CFD), the book focuses on specialized topics in food processing. It covers thermal, low temperature, non-thermal, and non-conventional thermal processing, along with the analysis of biological and enzyme reactors. The book also explores the use of artificial neural networks, exergy analysis, process control, and cleaning-in-place (CIP) systems in industry. With the availability of high speed computers and advances in computational techniques, the application of mathematical modeling in food science and engineering is growing. This comprehensive volume provides up-to-date, wide-ranging material on the mathematical analysis of transport phenomena in food.

Mathematical Modeling of Food Processing

Author: Mohammed M. Farid
Publisher: CRC Press
ISBN: 1420053515
Format: PDF, ePub
Download Now
Written by international experts from industry, research centers, and academia, Mathematical Modeling of Food Processing discusses the physical and mathematical analysis of transport phenomena associated with food processing. The models presented describe many of the important physical and biological transformations that occur in food during processing. After introducing the fundamentals of heat, mass, and momentum transfer as well as computational fluid dynamics (CFD), the book focuses on specialized topics in food processing. It covers thermal, low temperature, non-thermal, and non-conventional thermal processing, along with the analysis of biological and enzyme reactors. The book also explores the use of artificial neural networks, exergy analysis, process control, and cleaning-in-place (CIP) systems in industry. With the availability of high speed computers and advances in computational techniques, the application of mathematical modeling in food science and engineering is growing. This comprehensive volume provides up-to-date, wide-ranging material on the mathematical analysis of transport phenomena in food.

Engineering Aspects of Thermal Food Processing

Author: Ricardo Simpson
Publisher: CRC Press
ISBN: 9781420058598
Format: PDF, ePub
Download Now
Access the Latest Advances in Food Quality Optimization and Safety Assurance Thermal processing has undergone a remarkable amount of research throughout the past decade, indicating that the process not only remains viable, but that it is also expanding around the world. An organized exploration of new developments in academic and current food industry practices, Engineering Aspects of Thermal Food Processing presents groundbreaking advances in the physical and engineering aspects of thermal food processing, paying particular attention to modeling, simulation, optimization, online control, and automation. Divided into Four Cohesive Sections Under the editorial guidance of a leading thermal processing authority, the book first covers the fundamentals and new processes in the thermal processing industry, including new packaging materials like retortable pouches. The second section moves on to mathematical modeling and simulation, which also addresses emerging preservation technology such as ohmic heating. The third section of the book is devoted to optimization, recognizing that mathematical optimization is the key ingredient for computing optimal operating policies and building advanced decision support systems. This section discusses processes like thermal sterilization, microwave processing, and in-line aseptic processing as well as an analysis of plant production productivity. The final section examines online control and automation describing a practical and efficient strategy for on-line correction of thermal process deviations during retort sterilization of canned foods. Concluding with expert analysis and discussion of the manufacturers’ businesses in today’s competitive marketplace, Engineering Aspects of Thermal Food Processing explores the entire processing line from modeling through optimization. It effectively assists manufacturers in maintaining a seamless workflow while lowering their bottom lines.

Optimization in Food Engineering

Author: Ferruh Erdogdu
Publisher: CRC Press
ISBN: 1420061429
Format: PDF, Kindle
Download Now
While mathematically sophisticated methods can be used to better understand and improve processes, the nonlinear nature of food processing models can make their dynamic optimization a daunting task. With contributions from a virtual who’s who in the food processing industry, Optimization in Food Engineering evaluates the potential uses and limitations of optimization techniques for food processing, including classical methods, artificial intelligence-genetic algorithms, multi-objective optimization procedures, and computational fluid dynamics. The book begins by delineating the fundamentals and methods for analytical and numerical procedures. It then covers optimization techniques and how they specifically apply to food processing. The final section digs deep into fundamental food processes and provides detailed explanation and examples from the most experienced and published authors in the field. This includes a range of processes from optimization strategies for improving the performance of batch reactors to the optimization of conventional thermal processing, microwave heating, freeze drying, spray drying, and refrigeration systems, to structural optimization techniques for developing beverage containers, optimization approaches for impingement processing, and optimal operational planning methodologies. Each chapter presents the required parameters for the given process with the optimization procedure to apply. An increasing part of the food processor’s job is to optimize systems to squeeze more dollars out of overhead to offset rising utility and transportation costs. Logically combining optimization techniques from many sources into a single volume focused on food production processes, this book provides real solutions to increases in energy, healthcare, and product liability costs that impact the bottom line in food production.

Computational Fluid Dynamics in Food Processing

Author: Da-Wen Sun
Publisher: CRC Press
ISBN: 9781420009217
Format: PDF, ePub
Download Now
The implementation of early-stage simulation tools, specifically computational fluid dynamics (CFD), is an international and interdisciplinary trend that allows engineers to computer-test concepts all the way through the development of a process or system. With the enhancement of computing power and efficiency, and the availability of affordable CFD packages, the applications of CFD have extended into the food industry for modeling industrial processes, performing comprehensive analyses, and optimizing the efficiency and cost effectiveness of the new processes and systems. Beginning a new series dedicated to contemporary, up-to-date food engineering practices, Computational Fluid Dynamics in Food Processing is the first book of its kind to illustrate the use of CFD for solving heat and mass transfer problems in the food industry. Using a computational grid, CFD solves governing equations that describe fluid flow across each grid cell by means of an iterative procedure in order to predict and visualize the profiles of velocity, temperature, pressure, and other parameters. Starting with an overview of CFD technology and applications, the book illustrates the use of CFD for gaining a qualitative and quantitative assessment of the performance of processes involving heat and mass transfer. Specific chapters cover airflow in refrigerated trucks, retail display cabinets, microwaves, and doorways; velocity in meat dryers and spray drying; thermal sterilization; plate heat exchangers; membrane separation systems; jet impingement ovens; food extrusion and high-pressure processing; prediction of hygiene; design of biosensors; and the fermentation of tea and ripening of cheese. Drawing from an esteemed panel of international professionals and academics, this groundbreaking bookprovides engineers and technologists in research, development, and operations with critical, comprehensive, and readily accessible information on the art and science of CFD technology.

Food Engineering Handbook

Author: Theodoros Varzakas
Publisher: CRC Press
ISBN: 1482261669
Format: PDF, Mobi
Download Now
Food Engineering Handbook: Food Process Engineering addresses the basic and applied principles of food engineering methods used in food processing operations around the world. Combining theory with a practical, hands-on approach, this book examines the thermophysical properties and modeling of selected processes such as chilling, freezing, and dehydration. A complement to Food Engineering Handbook: Food Engineering Fundamentals, this text: Discusses size reduction, mixing, emulsion, and encapsulation Provides case studies of solid–liquid and supercritical fluid extraction Explores fermentation, enzymes, fluidized-bed drying, and more Presenting cutting-edge information on new and emerging food engineering processes, Food Engineering Handbook: Food Process Engineering is an essential reference on the modeling, quality, safety, and technologies associated with food processing operations today.

Thermal Food Processing

Author: Da-Wen Sun
Publisher: CRC Press
ISBN: 1439876797
Format: PDF
Download Now
Thermal processing remains one of the most important processes in the food industry. Now in its second edition, Thermal Food Processing: New Technologies and Quality Issues continues to explore the latest developments in the field. Assembling the work of a worldwide panel of experts, this volume highlights topics vital to the food industry today and pinpoints the trends in future research and development. Topics discussed include: Thermal properties of foods, including heat capacity, conductivity, diffusivity, and density Heat and mass transfer and related engineering principles, mechanisms, and models The development and application of deterministic heat transfer models for predicting internal product temperatures Modeling thermal processing using artificial neural networks (ANN) and computational fluid dynamics (CFD) Thermal processing of meat, poultry, fish, and dairy products; canned foods; ready meals; and vegetables The effect of ultrahigh temperature (UHT) treatment processing on milk, including the impact on nutrient composition, safety, and organoleptic aspects Ohmic, radio frequency (RF) dialectric, infrared, and pressure-assisted heating pH-assisted thermal processing In addition to updating all content, this second edition includes five new chapters: Thermal Effects in Food Microbiology, Modeling Thermal Microbial Inactivation Kinetics, Thermal Processing of Food and Fruit Juices, Aseptic Processing and Packaging, and Microwave Heating. The final chapter of the book examines systems used in the evaluation of thermal processes and the development of time temperature integrators (TTIs) to ensure the safety of thermally processed food. An up-to-date survey of essential techniques and the science behind them, this volume is a critical reference for food industry professionals.

Food Process Modelling

Author: L. M. M. Tijskens
Publisher: Woodhead Publishing
ISBN: 9781855735651
Format: PDF
Download Now
The measurement, prediction, and control of food processes in the quest for greater consistency, quality, and safety in the final product has been a major trend in the food industry over the past decade. The shift to modelling food processes as a way of identifying and understanding the key variables at work is a major outgrowth of this trend.The editors and contributors explore the current trends in modelling, their strengths, and weaknesses, and their applications across the supply chain in this book.

Mathematical Models for Society and Biology

Author: Edward Beltrami
Publisher: Academic Press
ISBN: 0124046932
Format: PDF, Docs
Download Now
Mathematical Models for Society and Biology, 2e, is a useful resource for researchers, graduate students, and post-docs in the applied mathematics and life science fields. Mathematical modeling is one of the major subfields of mathematical biology. A mathematical model may be used to help explain a system, to study the effects of different components, and to make predictions about behavior. Mathematical Models for Society and Biology, 2e, draws on current issues to engagingly relate how to use mathematics to gain insight into problems in biology and contemporary society. For this new edition, author Edward Beltrami uses mathematical models that are simple, transparent, and verifiable. Also new to this edition is an introduction to mathematical notions that every quantitative scientist in the biological and social sciences should know. Additionally, each chapter now includes a detailed discussion on how to formulate a reasonable model to gain insight into the specific question that has been introduced. Offers 40% more content – 5 new chapters in addition to revisions to existing chapters Accessible for quick self study as well as a resource for courses in molecular biology, biochemistry, embryology and cell biology, medicine, ecology and evolution, bio-mathematics, and applied math in general Features expanded appendices with an extensive list of references, solutions to selected exercises in the book, and further discussion of various mathematical methods introduced in the book

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine

Author: Abram S. Dorfman
Publisher: John Wiley & Sons
ISBN: 1119320569
Format: PDF, Docs
Download Now
Applications of mathematical heat transfer and fluid flow models in engineering and medicine Abram S. Dorfman, University of Michigan, USA Engineering and medical applications of cutting-edge heat and flow models This book presents innovative efficient methods in fluid flow and heat transfer developed and widely used over the last fifty years. The analysis is focused on mathematical models which are an essential part of any research effort as they demonstrate the validity of the results obtained. The universality of mathematics allows consideration of engineering and biological problems from one point of view using similar models. In this book, the current situation of applications of modern mathematical models is outlined in three parts. Part I offers in depth coverage of the applications of contemporary conjugate heat transfer models in various industrial and technological processes, from aerospace and nuclear reactors to drying and food processing. In Part II the theory and application of two recently developed models in fluid flow are considered: the similar conjugate model for simulation of biological systems, including flows in human organs, and applications of the latest developments in turbulence simulation by direct solution of Navier-Stokes equations, including flows around aircraft. Part III proposes fundamentals of laminar and turbulent flows and applied mathematics methods. The discussion is complimented by 365 examples selected from a list of 448 cited papers, 239 exercises and 136 commentaries. Key features: Peristaltic flows in normal and pathologic human organs. Modeling flows around aircraft at high Reynolds numbers. Special mathematical exercises allow the reader to complete expressions derivation following directions from the text. Procedure for preliminary choice between conjugate and common simple methods for particular problem solutions. Criterions of conjugation, definition of semi-conjugate solutions. This book is an ideal reference for graduate and post-graduate students and engineers.