Mathematical Models in Population Biology and Epidemiology

Author: Fred Brauer
Publisher: Springer Science & Business Media
ISBN: 1475735162
Format: PDF, ePub, Mobi
Download Now
The goal of this book is to search for a balance between simple and analyzable models and unsolvable models which are capable of addressing important questions on population biology. Part I focusses on single species simple models including those which have been used to predict the growth of human and animal population in the past. Single population models are, in some sense, the building blocks of more realistic models -- the subject of Part II. Their role is fundamental to the study of ecological and demographic processes including the role of population structure and spatial heterogeneity -- the subject of Part III. This book, which will include both examples and exercises, is of use to practitioners, graduate students, and scientists working in the field.

Mathematical Models in Population Biology and Epidemiology

Author: Fred Brauer
Publisher: Springer Science & Business Media
ISBN: 1461416868
Format: PDF, Kindle
Download Now
The goal of this book is to search for a balance between simple and analyzable models and unsolvable models which are capable of addressing important questions on population biology. Part I focusses on single species simple models including those which have been used to predict the growth of human and animal population in the past. Single population models are, in some sense, the building blocks of more realistic models -- the subject of Part II. Their role is fundamental to the study of ecological and demographic processes including the role of population structure and spatial heterogeneity -- the subject of Part III. This book, which will include both examples and exercises, is of use to practitioners, graduate students, and scientists working in the field.

Mathematical Models in Population Biology and Epidemiology

Author: Fred Brauer
Publisher: Springer Science & Business Media
ISBN: 9780387989020
Format: PDF, ePub
Download Now
The goal of this book is to search for a balance between simple and analyzable models and unsolvable models which are capable of addressing important questions on population biology. Part I focusses on single species simple models including those which have been used to predict the growth of human and animal population in the past. Single population models are, in some sense, the building blocks of more realistic models -- the subject of Part II. Their role is fundamental to the study of ecological and demographic processes including the role of population structure and spatial heterogeneity -- the subject of Part III. This book, which will include both examples and exercises, is of use to practitioners, graduate students, and scientists working in the field.

Mathematical Epidemiology of Infectious Diseases

Author: O. Diekmann
Publisher: John Wiley & Sons
ISBN: 9780471492412
Format: PDF, ePub, Mobi
Download Now
Mathematical Epidemiology of Infectious Diseases Model Building, Analysis and Interpretation O. Diekmann University of Utrecht, The Netherlands J. A. P. Heesterbeek Centre for Biometry Wageningen, The Netherlands The mathematical modelling of epidemics in populations is a vast and important area of study. It is about translating biological assumptions into mathematics, about mathematical analysis aided by interpretation and about obtaining insight into epidemic phenomena when translating mathematical results back into population biology. Model assumptions are formulated in terms of, usually stochastic, behaviour of individuals and then the resulting phenomena, at the population level, are unravelled. Conceptual clarity is attained, assumptions are stated clearly, hidden working hypotheses are attained and mechanistic links between different observables are exposed. Features: * Model construction, analysis and interpretation receive detailed attention * Uniquely covers both deterministic and stochastic viewpoints * Examples of applications given throughout * Extensive coverage of the latest research into the mathematical modelling of epidemics of infectious diseases * Provides a solid foundation of modelling skills The reader will learn to translate, model, analyse and interpret, with the help of the numerous exercises. In literally working through this text, the reader acquires modelling skills that are also valuable outside of epidemiology, certainly within population dynamics, but even beyond that. In addition, the reader receives training in mathematical argumentation. The text is aimed at applied mathematicians with an interest in population biology and epidemiology, at theoretical biologists and epidemiologists. Previous exposure to epidemic concepts is not required, as all background information is given. The book is primarily aimed at self-study and ideally suited for small discussion groups, or for use as a course text.

Structured Population Models in Biology and Epidemiology

Author: Pierre Magal
Publisher: Springer Science & Business Media
ISBN: 3540782729
Format: PDF, Docs
Download Now
This book consists of six chapters written by leading researchers in mathematical biology. These chapters present recent and important developments in the study of structured population models in biology and epidemiology. Topics include population models structured by age, size, and spatial position; size-structured models for metapopulations, macroparasitc diseases, and prion proliferation; models for transmission of microparasites between host populations living on non-coincident spatial domains; spatiotemporal patterns of disease spread; method of aggregation of variables in population dynamics; and biofilm models. It is suitable as a textbook for a mathematical biology course or a summer school at the advanced undergraduate and graduate level. It can also serve as a reference book for researchers looking for either interesting and specific problems to work on or useful techniques and discussions of some particular problems.

An Introduction to Mathematical Epidemiology

Author: Maia Martcheva
Publisher: Springer
ISBN: 1489976124
Format: PDF, Mobi
Download Now
The book is a comprehensive, self-contained introduction to the mathematical modeling and analysis of infectious diseases. It includes model building, fitting to data, local and global analysis techniques. Various types of deterministic dynamical models are considered: ordinary differential equation models, delay-differential equation models, difference equation models, age-structured PDE models and diffusion models. It includes various techniques for the computation of the basic reproduction number as well as approaches to the epidemiological interpretation of the reproduction number. MATLAB code is included to facilitate the data fitting and the simulation with age-structured models.

Dynamical Models in Biology

Author: Miklós Farkas
Publisher: Academic Press
ISBN: 9780080530604
Format: PDF, Kindle
Download Now
Dynamic Models in Biology offers an introduction to modern mathematical biology. This book provides a short introduction to modern mathematical methods in modeling dynamical phenomena and treats the broad topics of population dynamics, epidemiology, evolution, immunology, morphogenesis, and pattern formation. Primarily employing differential equations, the author presents accessible descriptions of difficult mathematical models. Recent mathematical results are included, but the author's presentation gives intuitive meaning to all the main formulae. Besides mathematicians who want to get acquainted with this relatively new field of applications, this book is useful for physicians, biologists, agricultural engineers, and environmentalists. Key Topics Include: Chaotic dynamics of populations The spread of sexually transmitted diseases Problems of the origin of life Models of immunology Formation of animal hide patterns The intuitive meaning of mathematical formulae explained with many figures Applying new mathematical results in modeling biological phenomena Miklos Farkas is a professor at Budapest University of Technology where he has researched and instructed mathematics for over thirty years. He has taught at universities in the former Soviet Union, Canada, Australia, Venezuela, Nigeria, India, and Columbia. Prof. Farkas received the 1999 Bolyai Award of the Hungarian Academy of Science and the 2001 Albert Szentgyorgyi Award of the Hungarian Ministry of Education. A 'down-to-earth' introduction to the growing field of modern mathematical biology Also includes appendices which provide background material that goes beyond advanced calculus and linear algebra

Mathematical Epidemiology

Author: Fred Brauer
Publisher: Springer Science & Business Media
ISBN: 3540789103
Format: PDF
Download Now
Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downloaded at the web site of the Centre for Disease Modeling (www.cdm.yorku.ca).

Infectious Diseases of Humans

Author: Roy M. Anderson
Publisher: Oxford University Press
ISBN: 9780198540403
Format: PDF, ePub, Mobi
Download Now
This much-acclaimed book provides an analytic framework for evaluating public health measures aimed at eradicating or controlling communicable diseases.