Mathematical Thought From Ancient to Modern Times

Author: Morris Kline
Publisher: Oxford University Press
ISBN: 0199770468
Format: PDF, Mobi
Download Now
The major creations and developments in mathematics from the beginnings in Babylonia and Egypt through the first few decades of the twentieth century are presented with clarity and precision in this comprehensive historical study.

Mathematics

Author: Morris Kline
Publisher: Oxford University Press, USA
ISBN: 9780195030853
Format: PDF
Download Now
Refuting the accepted belief that mathematics is exact and infallible, the author examines the development of conflicting concepts of mathematics and their implications for the physical, applied, social, and computer sciences

Mathematics and the Physical World

Author: Morris Kline
Publisher: Courier Corporation
ISBN: 0486136310
Format: PDF, Mobi
Download Now
Stimulating account of development of mathematics from arithmetic, algebra, geometry and trigonometry, to calculus, differential equations, and non-Euclidean geometries. Also describes how math is used in optics, astronomy, and other phenomena.

Greek Mathematical Thought and the Origin of Algebra

Author: Jacob Klein
Publisher: Courier Corporation
ISBN: 0486319814
Format: PDF, ePub
Download Now
Important study focuses on the revival and assimilation of ancient Greek mathematics in the 13th–16th centuries, via Arabic science, and the 16th-century development of symbolic algebra. This brought about the crucial change in the concept of number that made possible modern science — in which the symbolic "form" of a mathematical statement is completely inseparable from its "content" of physical meaning. Includes a translation of Vieta's Introduction to the Analytical Art. 1968 edition. Bibliography.

Algebra in Ancient and Modern Times

Author: V. S. Varadarajan
Publisher: American Mathematical Soc.
ISBN: 9780821809891
Format: PDF, ePub, Mobi
Download Now
From the reviews: This is a fine book on two counts. First ... there is the singularly excellent treatment of the solution of biquadratic equations. Second, it paints a strong picture of mathematics as a very long sequence of accomplishments, each building on the ones before, in a way that beginning mathematicians can understand and appreciate it. It paints the picture in a concise and economical style, the style that mathematicians find elegant. I would particularly recommend Algebra in Ancient and Modern Times to strong high school students, to high school algebra teachers, to people who want a history of mathematics with a lot of mathematics in the history, and to anyone who needs to know how to find an analytic solution to a nasty fourth degree polynomial. --MAA Online Varadarajan spins a captivating tale, and the mathematics is first-rate. The book belongs on the shelf of any teacher of algebra ... The great treasure of this book is the discussion of the work of the great Hindu mathematicians Aryabhata (c.476-550), Brahmagupta (c.598-665), and Bhaskara (c.1114-1185). Teachers of mathematics history will be especially interested in Varadarajan's exposition of the remarkable cakravala, an algorithm for solving $X^2 - NY^2= \pm 1$. The book contains many exercises that enhance and supplement the text and that also include historical information. Many of the exercises ask readers to apply the historical techniques. Some of the exercises are quite difficult and will challenge any student. --Mathematics Teacher This text offers a special account of Indian work in diophantine equations during the 6th through 12th centuries and Italian work on solutions of cubic and biquadratic equations from the 11th through 16th centuries. The volume traces the historical development of algebra and the theory of equations from ancient times to the beginning of modern algebra, outlining some modern themes such as the fundamental theorem of algebra, Clifford algebras, and quaternions. It is geared toward undergraduates who have no background in calculus. V. S. Varadarajan is a professor of mathematics at the University of California, Los Angeles.

Complex Functions

Author: Gareth A. Jones
Publisher: Cambridge University Press
ISBN: 9780521313667
Format: PDF, ePub, Docs
Download Now
Elliptic functions and Riemann surfaces played an important role in nineteenth-century mathematics. At the present time there is a great revival of interest in these topics not only for their own sake but also because of their applications to so many areas of mathematical research from group theory and number theory to topology and differential equations. In this book the authors give elementary accounts of many aspects of classical complex function theory including Möbius transformations, elliptic functions, Riemann surfaces, Fuchsian groups and modular functions. A distinctive feature of their presentation is the way in which they have incorporated into the text many interesting topics from other branches of mathematics. This book is based on lectures given to advanced undergraduates and is well-suited as a textbook for a second course in complex function theory. Professionals will also find it valuable as a straightforward introduction to a subject which is finding widespread application throughout mathematics.

Mathematics in Western Culture

Author: Morris Kline
Publisher: Oxford University Press
ISBN: 9780195345452
Format: PDF, ePub
Download Now
This book gives a remarkably fine account of the influences mathematics has exerted on the development of philosophy, the physical sciences, religion, and the arts in Western life.

A Brief History of Mathematical Thought

Author: Luke Heaton
Publisher: Oxford University Press
ISBN: 0190621761
Format: PDF, ePub, Mobi
Download Now
Emblazoned on many advertisements for the wildly popular game of Sudoku are the reassuring words, "no mathematical knowledge required." Anxiety about math plagues many of us, and school memories can still summon intense loathing. In A Brief History of Mathematical Thought, Luke Heaton shows that much of what many think-and fear-about mathematics is misplaced, and to overcome our insecurities we need to understand its history. To help, he offers a lively guide into and through the world of mathematics and mathematicians, one in which patterns and arguments are traced through logic in a language grounded in concrete experience. Heaton reveals how Greek and Roman mathematicians like Pythagoras, Euclid, and Archimedes helped shaped the early logic of mathematics; how the Fibonacci sequence, the rise of algebra, and the invention of calculus are connected; how clocks, coordinates, and logical padlocks work mathematically; and how, in the twentieth century, Alan Turing's revolutionary work on the concept of computation laid the groundwork for the modern world. A Brief History of Mathematical Thought situates mathematics as part of, and essential to, lived experience. Understanding it requires not abstract thought or numbing memorization but an historical imagination and a view to its origins. --