Mathematics for Biological Scientists

Author: Mike Aitken
Publisher: Garland Science
ISBN: 1136843930
Format: PDF
Download Now
Mathematics for Biological Scientists is a new undergraduate textbook which covers the mathematics necessary for biology students to understand, interpret and discuss biological questions. The book's twelve chapters are organized into four themes. The first theme covers the basic concepts of mathematics in biology, discussing the mathematics used in biological quantities, processes and structures. The second theme, calculus, extends the language of mathematics to describe change. The third theme is probability and statistics, where the uncertainty and variation encountered in real biological data is described. The fourth theme is explored briefly in the final chapter of the book, which is to show how the 'tools' developed in the first few chapters are used within biology to develop models of biological processes. Mathematics for Biological Scientists fully integrates mathematics and biology with the use of colour illustrations and photographs to provide an engaging and informative approach to the subject of mathematics and statistics within biological science.

An Introduction to the Mathematics of Biology with Computer Algebra Models

Author: Edward K. Yeargers
Publisher: Springer Science & Business Media
ISBN: 147571095X
Format: PDF, Mobi
Download Now
Biology is a source of fascination for most scientists, whether their training is in the life sciences or not. In particular, there is a special satisfaction in discovering an understanding of biology in the context of another science like mathematics. Fortunately there are plenty of interesting (and fun) problems in biology, and virtually all scientific disciplines have become the richer for it. For example, two major journals, Mathematical Biosciences and Journal of Mathematical Biology, have tripled in size since their inceptions 20-25 years ago. The various sciences have a great deal to give to one another, but there are still too many fences separating them. In writing this book we have adopted the philosophy that mathematical biology is not merely the intrusion of one science into another, but has a unity of its own, in which both the biology and the math ematics should be equal and complete, and should flow smoothly into and out of one another. We have taught mathematical biology with this philosophy in mind and have seen profound changes in the outlooks of our science and engineering students: The attitude of "Oh no, another pendulum on a spring problem!," or "Yet one more LCD circuit!" completely disappeared in the face of applications of mathematics in biology. There is a timeliness in calculating a protocol for ad ministering a drug.

Mathematical Biology II

Author: James D. Murray
Publisher: Springer Science & Business Media
ISBN: 0387952284
Format: PDF, Docs
Download Now
This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology. From the reviews: ""This book, a classical text in mathematical biology, cleverly combines mathematical tools with subject area sciences."--SHORT BOOK REVIEWS

Essential Mathematical Biology

Author: Nicholas F. Britton
Publisher: Springer Science & Business Media
ISBN: 1447100492
Format: PDF, Mobi
Download Now
This self-contained introduction to the fast-growing field of Mathematical Biology is written for students with a mathematical background. It sets the subject in a historical context and guides the reader towards questions of current research interest. A broad range of topics is covered including: Population dynamics, Infectious diseases, Population genetics and evolution, Dispersal, Molecular and cellular biology, Pattern formation, and Cancer modelling. Particular attention is paid to situations where the simple assumptions of homogenity made in early models break down and the process of mathematical modelling is seen in action.

The Structure of Biological Science

Author: Alexander Rosenberg
Publisher: Cambridge University Press
ISBN: 9780521275613
Format: PDF
Download Now
This book provides a comprehensive guide to the conceptual methodological, and epistemological problems of biology, and treats in depth the major developments in molecular biology and evolutionary theory that have transformed both biology and its philosophy in recent decades. At the same time the work is a sustained argument for a particular philosophy of biology that unifies disparate issues and offers a framework for expectations about the future directions of the life sciences. The argument explores differences between autonomist and anti-autonomist views of biology. The result is a vindication of reductionism, but one that is unexpectedly hollow. For it leaves the exponents of the autonomy of biology from physical science with as much as their view of biology really requires - and rather more than the reductionist might comfortably concede. Professor Rosenberg shows how the problems of the philosophy of biology are interconnected and how their solutions are interdependent, However, this book focuses more on the direct concerns of biologists, rather than the traditional agenda of philosophers' problems about biology. This departure from earlier books on the subject results both in greater understanding and relevance of the philosophy of science to biology as a whole.

Math for Scientists

Author: Natasha Maurits
Publisher: Springer
ISBN: 3319573543
Format: PDF, ePub, Docs
Download Now
This book reviews math topics relevant to non-mathematics students and scientists, but which they may not have seen or studied for a while. These math issues can range from reading mathematical symbols, to using complex numbers, dealing with equations involved in calculating medication equivalents, the General Linear Model (GLM) used in e.g. neuroimaging analysis, finding the minimum of a function, independent component analysis, or filtering approaches. Almost every student or scientist, will at some point run into mathematical formulas or ideas in scientific papers that may be hard to understand, given that formal math education may be some years ago. In this book we will explain the theory behind many of these mathematical ideas and expressions and provide readers with the tools to better understand them. We will revisit high school mathematics and extend and relate this to the mathematics you need to understand the math you may encounter in the course of your research. This book will help you understand the math and formulas in the scientific papers you read. To achieve this goal, each chapter mixes theory with practical pen-and-paper exercises such that you (re)gain experience with solving math problems yourself. Mnemonics will be taught whenever possible. To clarify the math and help readers apply it, each chapter provides real-world and scientific examples.

A Biologist s Guide to Mathematical Modeling in Ecology and Evolution

Author: Sarah P. Otto
Publisher: Princeton University Press
ISBN: 1400840910
Format: PDF, Mobi
Download Now
Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available

Introduction to Mathematical Biology

Author: Ching Shan Chou
Publisher: Springer
ISBN: 3319296388
Format: PDF
Download Now
This book is based on a one semester course that the authors have been teaching for several years, and includes two sets of case studies. The first includes chemostat models, predator-prey interaction, competition among species, the spread of infectious diseases, and oscillations arising from bifurcations. In developing these topics, readers will also be introduced to the basic theory of ordinary differential equations, and how to work with MATLAB without having any prior programming experience. The second set of case studies were adapted from recent and current research papers to the level of the students. Topics have been selected based on public health interest. This includes the risk of atherosclerosis associated with high cholesterol levels, cancer and immune interactions, cancer therapy, and tuberculosis. Readers will experience how mathematical models and their numerical simulations can provide explanations that guide biological and biomedical research. Considered to be the undergraduate companion to the more advanced book "Mathematical Modeling of Biological Processes" (A. Friedman, C.-Y. Kao, Springer – 2014), this book is geared towards undergraduate students with little background in mathematics and no biological background.

Introduction to Mathematical Biology

Author: S. I. Rubinow
Publisher: Courier Corporation
ISBN: 9780486425320
Format: PDF, ePub, Mobi
Download Now
This volume is designed to cultivate in graduate biology students an awareness of and familiarity with applications of mathematical techniques and methods related to biology. This text explores five areas of mathematical biology, presented in a unified fashion; the first three subjects, cell growth, enzymatic reactions, and physiological tracers, are biological; the final two, biological fluid dynamics and diffusion, are biophysical. Introduced in an order of progressive mathematical complexity, the topics essentially follow a course in elementary differential equations, although linear algebra and graph theory are also touched upon. Free of mathematical jargon, the text requires only a knowledge of elementary calculus. A set of problems appears at the end of each chapter, with solutions at the end of the book. Unabridged republication of the edition published by John Wiley & Sons, New York, 1975. Preface. Solutions. References. Appendixes. Author Index. Subject Index.